Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements

We investigate the influence of layer thicknesses and interface modifications on the fundamental electronic gap of Si/SiO2 multilayers by a combined ab initio calculation and photoluminescence (PL) analysis. For the band gap calculations different Si/SiO2 interface models are studied. Experimentally investigated multiple quantum wells are prepared by remote plasma-enhanced chemical vapor deposition and rapid thermal annealing. The well-width dependence of the band gap obtained from PL measurements is much weaker than found in previous studies. This sublinear variation is in accordance with simulated electronic band gaps for hydrogen-free Si/SiO2 interfaces. The presence of hydrogen at the interfaces enforces the confinement effect for the band gap. Materials involved: nanocrystalline silicon, amorphous silica, β-cristobalite silica, and Si/SiO2 interface.

[1]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[2]  Existence of direct bandgap transitions in superlattices , 1999 .

[3]  W. Anderson,et al.  Influence of Defects and Band Offsets on Carrier Transport Mechanisms in Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells , 2000 .

[4]  Antonio Martí,et al.  Absolute limiting efficiencies for photovoltaic energy conversion , 1994 .

[5]  Alfredo Pasquarello,et al.  Interface structure between silicon and its oxide by first-principles molecular dynamics , 1998, Nature.

[6]  Residual stress in Si nanocrystals embedded in a SiO2 matrix , 2006 .

[7]  The electronic and optical properties of Si/SiO2 superlattices: role of confined and defect states , 2000 .

[8]  M. Först,et al.  Influence of excitonic singlet-triplet splitting on the photoluminescence of Si∕SiO2 multiple quantum wells fabricated by remote plasma-enhanced chemical-vapor deposition , 2006 .

[9]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[10]  Y. Kanemitsu,et al.  Photoluminescence dynamics of amorphous Si/SiO2 quantum wells , 2000 .

[11]  K. Shiraishi,et al.  Theoretical study of the band offset at silicon-oxide/silicon interfaces with interfacial defects , 1998 .

[12]  M. Green,et al.  Atomistic structure of SiO2∕Si∕SiO2 quantum wells with an apparently crystalline silicon oxide , 2004 .

[13]  W. Aulbur,et al.  Quasiparticle calculations in solids , 2000 .

[14]  Lorenzo Pavesi,et al.  Towards the First Silicon Laser , 2003 .

[15]  Abbas Ourmazd,et al.  Si-->SiO 2 transformation: Interfacial structure and mechanism , 1987 .

[16]  F. Bechstedt,et al.  Quasiparticle band structures and optical spectra of β -cristobalite SiO 2 , 2004 .

[17]  Lorenzo Pavesi,et al.  Gain Theory And Models In Silicon Nanostructures , 2003 .

[18]  T. Inokuma,et al.  Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 ≤ x ≤ 2.0) prepared by plasma-enhanced chemical vapor deposition☆ , 1995 .

[19]  I. P. Batra,et al.  ELECTRONIC STRUCTURE OF A MODEL Si-SiO2 INTERFACE , 1978 .

[20]  J. C. Phillips,et al.  Interfacial strain-induced self-organization in semiconductor dielectric gate stacks. I. Strain relief at the Si–SiO2 interface , 2004 .

[21]  F. Bechstedt,et al.  Quasiparticle effect on electron confinement in Si∕SiO2 quantum-well structures , 2007 .

[22]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[23]  Zheng-Hong Lu,et al.  Quantum confined luminescence in Si/SiO2 superlattices. , 1996 .

[24]  K. Shiraishi,et al.  Microscopic mechanism for SiO2/Si interface passivation : Si=O double bond formation , 1997 .

[25]  S. Pantelides,et al.  Migration, incorporation, and passivation reactions of molecular hydrogen at the Si ‐ Si O 2 interface , 2004 .

[26]  Francesco Priolo,et al.  Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices , 2000 .

[27]  G. Lucovsky,et al.  Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition , 1986 .

[28]  S. Selberherr,et al.  Modeling of tunneling current and gate dielectric reliability for nonvolatile memory devices , 2004, IEEE Transactions on Device and Materials Reliability.

[29]  M. Zacharias,et al.  Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces , 2000 .

[30]  Martin A. Green,et al.  Potential for low dimensional structures in photovoltaics , 2000 .

[31]  M. Först,et al.  Fabrication of a Si∕SiO2 multiple-quantum-well light emitting diode using remote plasma enhanced chemical vapor deposition , 2005 .

[32]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .