Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements
暂无分享,去创建一个
Heinrich Kurz | Bernd Spangenberg | Friedhelm Bechstedt | B. Berghoff | R. Rölver | M. Först | F. Bechstedt | M. Först | H. Kurz | R. Rölver | B. Spangenberg | J. Wagner | K. Seino | B. Berghoff | J. Mayer | Jan-Martin Wagner | K. Seino | A. Dymiati | Joachim Mayer | A. Dymiati
[1] D. J. Lockwood,et al. Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.
[2] Existence of direct bandgap transitions in superlattices , 1999 .
[3] W. Anderson,et al. Influence of Defects and Band Offsets on Carrier Transport Mechanisms in Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells , 2000 .
[4] Antonio Martí,et al. Absolute limiting efficiencies for photovoltaic energy conversion , 1994 .
[5] Alfredo Pasquarello,et al. Interface structure between silicon and its oxide by first-principles molecular dynamics , 1998, Nature.
[6] Residual stress in Si nanocrystals embedded in a SiO2 matrix , 2006 .
[7] The electronic and optical properties of Si/SiO2 superlattices: role of confined and defect states , 2000 .
[8] M. Först,et al. Influence of excitonic singlet-triplet splitting on the photoluminescence of Si∕SiO2 multiple quantum wells fabricated by remote plasma-enhanced chemical-vapor deposition , 2006 .
[9] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[10] Y. Kanemitsu,et al. Photoluminescence dynamics of amorphous Si/SiO2 quantum wells , 2000 .
[11] K. Shiraishi,et al. Theoretical study of the band offset at silicon-oxide/silicon interfaces with interfacial defects , 1998 .
[12] M. Green,et al. Atomistic structure of SiO2∕Si∕SiO2 quantum wells with an apparently crystalline silicon oxide , 2004 .
[13] W. Aulbur,et al. Quasiparticle calculations in solids , 2000 .
[14] Lorenzo Pavesi,et al. Towards the First Silicon Laser , 2003 .
[15] Abbas Ourmazd,et al. Si-->SiO 2 transformation: Interfacial structure and mechanism , 1987 .
[16] F. Bechstedt,et al. Quasiparticle band structures and optical spectra of β -cristobalite SiO 2 , 2004 .
[17] Lorenzo Pavesi,et al. Gain Theory And Models In Silicon Nanostructures , 2003 .
[18] T. Inokuma,et al. Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 ≤ x ≤ 2.0) prepared by plasma-enhanced chemical vapor deposition☆ , 1995 .
[19] I. P. Batra,et al. ELECTRONIC STRUCTURE OF A MODEL Si-SiO2 INTERFACE , 1978 .
[20] J. C. Phillips,et al. Interfacial strain-induced self-organization in semiconductor dielectric gate stacks. I. Strain relief at the Si–SiO2 interface , 2004 .
[21] F. Bechstedt,et al. Quasiparticle effect on electron confinement in Si∕SiO2 quantum-well structures , 2007 .
[22] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[23] Zheng-Hong Lu,et al. Quantum confined luminescence in Si/SiO2 superlattices. , 1996 .
[24] K. Shiraishi,et al. Microscopic mechanism for SiO2/Si interface passivation : Si=O double bond formation , 1997 .
[25] S. Pantelides,et al. Migration, incorporation, and passivation reactions of molecular hydrogen at the Si ‐ Si O 2 interface , 2004 .
[26] Francesco Priolo,et al. Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices , 2000 .
[27] G. Lucovsky,et al. Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition , 1986 .
[28] S. Selberherr,et al. Modeling of tunneling current and gate dielectric reliability for nonvolatile memory devices , 2004, IEEE Transactions on Device and Materials Reliability.
[29] M. Zacharias,et al. Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces , 2000 .
[30] Martin A. Green,et al. Potential for low dimensional structures in photovoltaics , 2000 .
[31] M. Först,et al. Fabrication of a Si∕SiO2 multiple-quantum-well light emitting diode using remote plasma enhanced chemical vapor deposition , 2005 .
[32] L. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .