S 1 Supporting Information : Size-Independent Energy Transfer in Biomimetic Nanoring Complexes

B1. Synthesis of known compounds .......................................................................................... 2 B2. Synthesis of free-base dipyridyl-substituted porphyrin dimer (P2py2) ................................. 3 5-(3,5-Bis(dodecyloxy)-4-pyridyl)-15-(3,5-bis(trihexylsilyl)phenyl)-porphyrin (1) ......................... 3 [5-(3,5-Bis(dodecyloxy)-4-pyridyl)-15-(3,5-bis(trihexylsilyl)-phenyl)-porphyrinato]-zinc(II) (2) .... 4 [5,15-Dibromo-10-(3,5-bis(dodecyloxy)-4-pyridyl)-20-(3,5-bis(trihexylsilyl)-phenyl)porphyrinato]-zinc(II) (3) ................................................................................................................ 4 [5-(3,5-Bis(dodecyloxy)-4-pyridyl)-15-(3,5-bis(trihexylsilyl)-phenyl)-10,20-(trihexylsilylethynyl)porphyrinato]-zinc(II) (4) ................................................................................................................ 4 [5-(3,5-Bis(dodecyloxy)-4-pyridyl)-10-ethinyl-15-(3,5-bis(trihexylsilyl)-phenyl)20(trihexylsilylethynyl)-porphyrinato]-zinc(II) (5) .............................................................................. 5 Dimerization of [5-(3,5-bis(dodecyloxy)-4-pyridyl)-10-ethinyl-15-(3,5-bis(trihexylsilyl)-phenyl)20-(trihexylsilylethynyl)-porphyrinato]-zinc(II) (synthesis of dimer (6), P2py2-Zn) ...................... 5 Demetallation of zinc dimer P2py2-Zn (6) (synthesis of free-base dimer (7), P2py2) ................... 6 C. Determination of stoichiometries of complexes ................................................................................ 8

[1]  Sophie A. L. Rousseaux,et al.  Caterpillar Track Complexes in Template‐Directed Synthesis and Correlated Molecular Motion† , 2015, Angewandte Chemie.

[2]  L. Herz,et al.  Ultrafast Energy Transfer in Biomimetic Multistrand Nanorings , 2014, Journal of the American Chemical Society.

[3]  Stefan Kedenburg,et al.  Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region , 2012 .

[4]  Johannes K. Sprafke,et al.  Stepwise effective molarities in porphyrin oligomer complexes: preorganization results in exceptionally strong chelate cooperativity. , 2011, Journal of the American Chemical Society.

[5]  M. Malfois,et al.  Vernier templating and synthesis of a 12-porphyrin nano-ring , 2011, Nature.

[6]  P. Kerth,et al.  Preparation and Optical Properties of Novel 3-Alkoxycarbonyl Aza- and Diazacoumarins , 2010 .

[7]  David Beljonne,et al.  Beyond Förster resonance energy transfer in biological and nanoscale systems. , 2009, The journal of physical chemistry. B.

[8]  S. Höger,et al.  ((3-Cyanopropyl)diisopropylsilyl)acetylene, a More Stable Analogue of ((3-Cyanopropyl)dimethylsilyl)acetylene , 2008 .

[9]  B. Albinsson,et al.  Enhanced pi conjugation around a porphyrin[6] nanoring. , 2008, Angewandte Chemie.

[10]  D. Kiriya,et al.  Molecule-based valence tautomeric bistability synchronized with a macroscopic crystal-melt phase transition. , 2008, Journal of the American Chemical Society.

[11]  Jürgen Köhler,et al.  The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes , 2006, Quarterly Reviews of Biophysics.

[12]  Tonu Pullerits,et al.  Excitonic coupling in polythiophenes: comparison of different calculation methods. , 2004, The Journal of chemical physics.

[13]  Gregory D Scholes,et al.  Long-range resonance energy transfer in molecular systems. , 2003, Annual review of physical chemistry.

[14]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[15]  Robert C. Hilborn,et al.  Einstein coefficients, cross sections, f values, dipole moments, and all that , 1982, physics/0202029.

[16]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .