A review of conduction phenomena in Li-ion batteries

Conduction has been one of the main barriers to further improvements in Li-ion batteries and is expected to remain so for the foreseeable future. In an effort to gain a better understanding of the conduction phenomena in Li-ion batteries and enable breakthrough technologies, a comprehensive survey of conduction phenomena in all components of a Li-ion cell incorporating theoretical, experimental, and simulation studies, is presented here. Included are a survey of the fundamentals of electrical and ionic conduction theories; a survey of the critical results, issues and challenges with respect to ionic and electronic conduction in the cathode, anode and electrolyte; a review of the relationship between electrical and ionic conduction for three cathode materials: LiCoO2, LiMn2O4, LiFePO4; a discussion of phase change in graphitic anodes and how it relates to diffusivity and conductivity; and the key conduction issues with organic liquid, solid-state and ionic liquid electrolytes. © 2010 Published by Elsevier B.V.

[1]  F. Gao,et al.  Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries , 2008 .

[2]  Minoru Inaba,et al.  Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder , 1998 .

[3]  Fangfang Liu,et al.  LiCoO2–MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties , 2007 .

[4]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[5]  E. W. Morris No , 1923, The Hospital and health review.

[6]  Shinzo Kohjiya,et al.  High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers , 1998 .

[7]  Rafael Reif,et al.  Electrochemical and Solid-Sates Letters , 1999 .

[8]  I. Barsukov New carbon based materials for electrochemical energy storage systems : batteries, supercapacitors and fuel cells , 2006 .

[9]  J. C. Fisher Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion , 1951 .

[10]  Ann Marie Sastry,et al.  Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials , 2004 .

[11]  Jian Xie,et al.  Orientation dependence of Li-ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering , 2008 .

[12]  Zhiyu Jiang,et al.  Intercalation of lithium ions into bulk and powder highly oriented pyrolytic graphite , 2006 .

[13]  R. Basu,et al.  Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method , 2009 .

[14]  J. Kennedy,et al.  Further Characterization of SiS2 ‐ Li2 S Glasses Doped with Lithium Halide , 1988 .

[15]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[16]  Chunsheng Wang,et al.  Kinetic characteristics of mixed conductive electrodes for lithium ion batteries , 2007 .

[17]  M. Dresselhaus,et al.  STRUCTURAL ANALYSIS OF THE B-DOPED MESOPHASE PITCH-BASED GRAPHITE FIBERS BY RAMAN SPECTROSCOPY , 1998 .

[18]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[19]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[20]  Denny A. Jones Principles and prevention of corrosion , 1991 .

[21]  Hsiu-Ping Lin,et al.  Temperature Effects on Li-Ion Cell Performance , 2002 .

[22]  K. Abraham Directions in secondary lithium battery research and development , 1993 .

[23]  T. Sogabe,et al.  Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries , 2001 .

[24]  C. Wan,et al.  Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte , 1998 .

[25]  M. J. Reddy,et al.  Complexation of poly(vinylidene fluoride):LiPF6 solid polymer electrolyte with enhanced ion conduction in ‘wet’ form , 2003 .

[26]  Chen,et al.  Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics. , 1994, Physical review. B, Condensed matter.

[27]  A. Levasseur,et al.  Graphite multilayer thin films: A new anode material for Li-ion microbatteries synthesis and characterization , 1997 .

[28]  M. Armand,et al.  A new polymer network for ionic conduction , 1992 .

[29]  M. Islam,et al.  Atomistic Simulation Studies of Lithium and Proton Insertion in Spinel Lithium Manganates , 1997 .

[30]  D. Hamann,et al.  Long-Range Elastic Interactions and Staging in Graphite Intercalation Compounds , 1979 .

[31]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[32]  I. G. Currie Fundamental mechanics of fluids , 1974 .

[33]  Physical Review , 1965, Nature.

[34]  Gerbrand Ceder,et al.  First‐Principles Evidence for Stage Ordering in Li x CoO2 , 1998 .

[35]  Christian Masquelier,et al.  Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites , 2006 .

[36]  Xiqian Yu,et al.  Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution , 2008 .

[37]  P. Wallace The Band Theory of Graphite , 1947 .

[38]  Ahmad Pesaran,et al.  Thermal/electrical modeling for abuse‐tolerant design of lithium ion modules , 2010 .

[39]  S. Selvasekarapandian,et al.  Structural and ionic transport properties of Li2AlZr[PO4]3 , 2006 .

[40]  Yoshihiro Yamada,et al.  Electrochemical study on Mn2+-substitution in LiFePO4 olivine compound , 2007 .

[41]  A. Miyamoto,et al.  Structural Properties of LixMn2O4 as Investigated by Molecular Dynamics and Density Functional Theory , 2000 .

[42]  H. Yukawa,et al.  Lithium intercalation and alloying effects on electronic structures of spinel lithium manganese oxides , 2000 .

[43]  J. Molenda,et al.  Transport properties of LiMn2O4 , 1999 .

[44]  Shinichi Komaba,et al.  Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material , 2004 .

[45]  Alex Zunger,et al.  Cation and vacancy ordering in Li x CoO 2 , 1998 .

[46]  Hiroyuki Kageyama,et al.  5 V lithium cathodes based on spinel solid solutions Li2Co1+XMn3-XO8: -1 ≤ X ≤ 1 , 1999 .

[47]  Eugene A. Irene,et al.  Electronic Properties of Materials , 2005 .

[48]  Tsutomu Ohzuku,et al.  An overview of positive-electrode materials for advanced lithium-ion batteries , 2007 .

[49]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[50]  D. Aurbach,et al.  The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling , 1997 .

[51]  Liquan Chen,et al.  The effect of cation doping on spinel LiMn2O4: a first-principles investigation , 2003 .

[52]  Craig A. J. Fisher,et al.  Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior , 2008 .

[53]  W. R. The Elements of Physical Chemistry , 1902, Nature.

[54]  J. Molenda,et al.  Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion batteries , 2007 .

[55]  Ann Marie Sastry,et al.  Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials , 2010 .

[56]  Y. H. Chen,et al.  Image Analysis and Computer Simulation of Nanoparticle Clustering in Combustion Systems , 2010 .

[57]  A. Manthiram,et al.  Factors limiting the electrochemical performance of oxide cathodes , 2006 .

[58]  Michel Perrier,et al.  Safe Li-ion polymer batteries for HEV applications , 2004 .

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  Ralph B. Dinwiddie,et al.  Thermal properties of lithium-ion battery and components , 1999 .

[61]  T. Takamura,et al.  Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes , 2007 .

[62]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[63]  Ermete Antolini,et al.  LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties , 2004 .

[64]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[65]  J. Tarascon,et al.  Factors affecting the electrochemical reactivity vs. lithium of carbon-free LiFePO4 thin films , 2008 .

[66]  L G O'Connell ADVANCES IN ELECTRIC VEHICLE TECHNOLOGY; MARKET NICHE FOR ELECTRIC POWERED FLEETS. IN: THE TRANSPORTATION IMPACTS OF THE CLEAN AIR ACT: MOBILE SOURCE EMISSIONS AND ALTERNATIVE FUELS. ABSTRACTED PROCEEDINGS. DES MOINES, IOWA, JULY 25-26, 1991 , 1991 .

[67]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[68]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[69]  Ru-Shi Liu,et al.  A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries , 2006 .

[70]  M. Osada,et al.  Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode , 2005 .

[71]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II . Graphite Electrodes , 1995 .

[72]  Chaoyang Wang,et al.  Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles , 2006 .

[73]  B. Segall Fermi Surface and Energy Bands of Copper , 1962 .

[74]  C. Delmas,et al.  On the Dual Effect of Mg Doping in LiCoO2 and Li1+δCoO2: Structural, Electronic Properties, and 7Li MAS NMR Studies , 2002 .

[75]  Yong Yang,et al.  Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability , 2009 .

[76]  Gregory L. Plett,et al.  Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2: Simultaneous state and parameter estimation , 2006 .

[77]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[78]  R. Holze,et al.  Carbon anode materials for lithium ion batteries , 2003 .

[79]  H. Maleki,et al.  Internal short circuit in Li-ion cells , 2009 .

[80]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[81]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[82]  M. Verbrugge,et al.  Temperature and Current Distribution in Thin‐Film Batteries , 1999 .

[83]  R. Torresi,et al.  Cathodes for lithium ion batteries: the benefits of using nanostructured materials , 2006 .

[84]  B. Cho,et al.  Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries , 2004 .

[85]  J A Warren,et al.  Phase field modeling of electrochemistry. II. Kinetics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  She-huang Wu,et al.  Improving electrochemical properties of lithium iron phosphate by addition of vanadium , 2007 .

[87]  V. Suryanarayanan,et al.  Role of carbon host lattices in Li-ion intercalation/de-intercalation processes , 2002 .

[88]  Y. Aihara,et al.  Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2 , 2004 .

[89]  S. Shi,et al.  Effect of Mg-doping on the structural and electronic properties of LiCoO2: A first-principles investigation , 2007 .

[90]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[91]  Daniel Lemordant,et al.  Electrolytic characteristics of ethylene carbonate–diglyme-based electrolytes for lithium batteries , 2000 .

[92]  J. Molenda,et al.  The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel , 2004 .

[93]  J. Prakash,et al.  A comparative electrochemical study of LiMn2O4 spinel thin-film and porous laminate , 2002 .

[94]  M. Ishikawa,et al.  Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries , 2006 .

[95]  Ralph E. White,et al.  Modeling Lithium Intercalation of a Single Spinel Particle under Potentiodynamic Control , 2000 .

[96]  J. Prakash,et al.  Preparation and characterization of partially substituted LiMyMn2−yO4 (M=Ni, Co, Fe) spinel cathodes for Li-ion batteries , 2002 .

[97]  G. Meunier,et al.  Solid state microbatteries , 1989 .

[98]  A. Veluchamy,et al.  Nickel doped spinel lithium manganate – some insights using opto-impedance , 2008 .

[99]  B. Scrosati,et al.  Electronic and Electrochemical Properties of LixNi1-yCoyO2 Cathodes Studied by Impedance Spectroscopy , 2001 .

[100]  B. Cho,et al.  Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries , 2001 .

[101]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[102]  Byungwoo Park,et al.  The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films , 2010 .

[103]  B. Ratnakumar,et al.  Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates , 1999 .

[104]  J. Wolfenstine Electrical conductivity of doped LiCoPO4 , 2006 .

[105]  B. Carré,et al.  Modeling viscosity and conductivity of lithium salts in γ-butyrolactone , 2002 .

[106]  R. Blint Binding of Ether and Carbonyl Oxygens to Lithium Ion , 1995 .

[107]  M. Doyle,et al.  Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process , 1997 .

[108]  M. Nakayama,et al.  Enhancement of electrochemical ion/electron-transfer reaction at solid|liquid interface by polymer coating on solid surface , 2008 .

[109]  David S. Wilkinson,et al.  Mass Transport in Solids and Fluids , 2000 .

[110]  Yi Liu,et al.  Electronic structures of lithium manganese oxides for rechargeable lithium battery electrodes , 1999 .

[111]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[112]  J. Barker,et al.  An electrochemical investigation into the lithium insertion properties of LixCoO2 , 1996 .

[113]  T. Fujimori,et al.  Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations. , 2007, The journal of physical chemistry. B.

[114]  Kenneth A. Walz,et al.  Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings , 2010 .

[115]  J. Howell,et al.  Diffusion in Solids , 1984, Materials Science Forum.

[116]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[117]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[118]  大野 弘幸,et al.  Electrochemical aspects of ionic liquids , 2005 .

[119]  N. Imanishi,et al.  Kinetics investigation of a preferential (104) plane oriented LiCoO2 thin film prepared by RF magnetron sputtering , 2007 .

[120]  Ralph E. White,et al.  Mathematical modeling of lithium-ion and nickel battery systems , 2002 .

[121]  M. Wakihara,et al.  Boron-substituted manganese spinel oxide cathode for lithium ion battery , 2001 .

[122]  A. Shimizu,et al.  Diffusion dynamics of the li atom on amorphous carbon: A direct molecular orbital-molecular dynamics study. , 2006, The journal of physical chemistry. B.

[123]  M. Doeff,et al.  Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites , 2008 .

[124]  M. Ue,et al.  Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent , 1995 .

[125]  Itaru Honma,et al.  Size effect on electrochemical property of nanocrystalline LiCoO2 synthesized from rapid thermal annealing method , 2009 .

[126]  Rahul Singhal,et al.  High voltage spinel cathode materials for high energy density and high rate capability Li ion rechargeable batteries , 2009 .

[127]  Seung‐Taek Myung,et al.  Effects of Al doping on the microstructure of LiCoO2 cathode materials , 2001 .

[128]  S. Bhattacharyya,et al.  Metallic conductivity of amorphous carbon films under high pressure , 1997 .

[129]  D. Aurbach,et al.  The effect of slow interfacial kinetics on the chronoamperometric response of composite lithiated graphite electrodes and on the calculation of the chemical diffusion coefficient of Li ions in graphite. , 2005, The journal of physical chemistry. B.

[130]  A. Zacarias,et al.  Quantum Transport , 2008 .

[131]  A. Endou,et al.  Electronic structure of the electrode/electrolyte interface: large-scale tight-binding quantum chemical simulation , 2004 .

[132]  D. Linden Handbook Of Batteries , 2001 .

[133]  Michikazu Hara,et al.  Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries , 1995 .

[134]  S. Kondo,et al.  Fabrications and properties of composite solid-state electrolytes , 2003 .

[135]  Tingfeng Yi,et al.  Erratum to: A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery , 2009 .

[136]  R. Brodd,et al.  Polymer battery R&D in the U.S. , 2000 .

[137]  J. Molenda Charge transport mechanism in LiCoyMn2−yO4 cathode material , 2003 .

[138]  Y. Mishin,et al.  Fundamentals of grain and interphase boundary diffusion , 1995 .

[139]  I. Profatilova,et al.  Frequency dependence of conductivity of ethylene carbonate based electrolyte for Li-ion battery , 2009 .

[140]  Hoon Sik Kim,et al.  Ionic Liquids as Electrolytes for Li Ion Batteries , 2004 .

[141]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[142]  Karim Zaghib,et al.  Electronic, Optical, and Magnetic Properties of LiFePO 4 : Small Magnetic Polaron Effects , 2007 .

[143]  E. Iguchi,et al.  Electrical transport properties in LiMn2O4 , 1998 .

[144]  Palani Balaya,et al.  Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique , 2008 .

[145]  Dahn,et al.  Phase diagram of LixC6. , 1991, Physical review. B, Condensed matter.

[146]  Giorgio Rizzoni,et al.  Principles and Applications of Electrical Engineering , 1993 .

[147]  First-principles studies on surface electronic structure and stability of LiFePO4 , 2009 .

[148]  Hyun-Min Park,et al.  Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries , 2006 .

[149]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[150]  J. Marzec Conduction mechanism in operating a LiMn2O4 cathode , 2002 .

[151]  Xincun Tang,et al.  A novel technique based on the ratio of potentio-charge capacity to galvano-charge capacity (RPG) for determination of the diffusion coefficient of intercalary species within insertion-host materials: theories and experiments , 2004 .

[152]  W. Lu,et al.  Interaction of nanoparticles with lipid layers. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[153]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[154]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[155]  D. Aurbach,et al.  Electrochemically driven first-order phase transitions caused by elastic responses of ion-insertion electrodes under external kinetic control , 2008 .

[156]  Gang Chen,et al.  Electronic structure of cubic Li(Fe0.1Mn1.9)O4 studied with Mössbauer spectroscopy and first-principles calculation , 2003 .

[157]  K. Zaghib,et al.  Small magnetic polaron effect in lithium iron phosphates , 2008 .

[158]  A. Claire The analysis of grain boundary diffusion measurements , 1963 .

[159]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[160]  W. W. Tyler,et al.  THERMAL CONDUCTIVITY, ELECTRICAL RESISTIVITY AND THERMOELECTRIC POWER OF GRAPHITE , 1953 .

[161]  B. Pecquenard,et al.  Influence of sputtering conditions on ionic conductivity of LiPON thin films , 2006 .

[162]  X. Jiao,et al.  Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. , 2005, The journal of physical chemistry. B.

[163]  S. Safran Phase Diagrams for Staged Intercalation Compounds , 1980 .

[164]  Ann Marie Sastry,et al.  Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[165]  J. Maier,et al.  Aluminium-doped LiFePO4 single crystals. Part II. Ionic conductivity, diffusivity and defect model. , 2008, Physical chemistry chemical physics : PCCP.

[166]  E. Kelder,et al.  Dynamically compacted all-ceramic lithium-ion batteries , 1999 .

[167]  A. K. Dutta Electrical Conductivity of Single Crystals of Graphite , 1953 .

[168]  L. A. Montoro,et al.  The role of structural and electronic alterations on the lithium diffusion in LixCo0.5Ni0.5O2 , 2004 .

[169]  B. Segall,et al.  Energy Bands of Aluminum , 1961 .

[170]  M. Itagaki,et al.  LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy , 2005 .

[171]  J A Warren,et al.  Phase field modeling of electrochemistry. I. Equilibrium. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[172]  Mark A. Ratner,et al.  ION TRANSPORT IN SOLVENT-FREE POLYMERS. , 1988 .

[173]  Kang Xu,et al.  Low temperature performance of graphite electrode in Li-ion cells , 2002 .

[174]  Jaephil Cho,et al.  Electrochemical Properties and Thermal Stability of Li a Ni1 − x CO x O 2 Cathode Materials , 2000 .

[175]  Y. Tomita,et al.  Effect of Substitution on the Electrical Conductivity of LiMxMn2-xO4 (M = Cu, Mg, Zn). , 2002 .

[176]  D. Shu,et al.  Electrochemical investigations on electrostatic spray deposited LiMn2O4 films , 2003 .

[177]  Hajime Matsumoto,et al.  Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte , 2005 .

[178]  C. Delmas,et al.  7 Li MAS NMR study of electrochemically deintercalated LixNi0.30Co0.70O2 phases: evidence of electronic and ionic mobility, and redox processes , 2001 .

[179]  Gerbrand Ceder,et al.  The electronic structure and band gap of LiFePO4 and LiMnPO4 , 2004, cond-mat/0506125.

[180]  Konstantin Konstantinov,et al.  Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source , 2004 .

[181]  Kuiper,et al.  Electronic structure of CoO, Li-doped CoO, and LiCoO2. , 1991, Physical review. B, Condensed matter.

[182]  Koji Yamada,et al.  Substitution effect of ionic conductivity in lithium ion conductor, LI3INBR6 − xCLx , 2008 .

[183]  Hong Wang,et al.  Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature , 2007 .

[184]  M. Wakihara,et al.  Chemical Diffusion Coefficient of Lithium in Carbon Fiber , 1996 .

[185]  M. Chiarelli,et al.  General Chemistry , 2019, Basic Chemical Concepts and Tables.

[186]  H. Sakaebe,et al.  Application of room temperature ionic liquids to Li batteries , 2007 .

[187]  L. Hong,et al.  Li+ conducting ‘fuzzy’ poly(ethylene oxide)–SiO2 polymer composite electrolytes , 2004 .

[188]  T. Gerdes,et al.  Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition , 2009 .

[189]  K. Abe,et al.  Functional electrolytes: Synergetic effect of electrolyte additives for lithium-ion battery , 2008 .

[190]  J. Amarilla,et al.  Nanosize LiNiyMn2 −yO4(0 < y≤ 0.5) spinels synthesized by a sucrose-aided combustion method. Characterization and electrochemical performance , 2004 .

[191]  P. Green Kinetics, Transport, and Structure in Hard and Soft Materials , 2005 .

[192]  M. Molenda,et al.  An attempt to improve electrical conductivity of the pyrolysed carbon-LiMn2O4−ySy (0 ≤ y ≤ 0.5) composites , 2007 .

[193]  A. Abouimrane,et al.  Investigation of Li salt doped succinonitrile as potential solid electrolytes for lithium batteries , 2007 .

[194]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[195]  Ann Marie Sastry,et al.  Effect of nanorope waviness on the effective moduli of nanotube sheets , 2004 .

[196]  M. Ratner,et al.  Conformation and Ion‐Transport Models for the Structure and Ionic Conductivity in Complexes of Polyethers with Alkali Metal Salts , 1982 .

[197]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[198]  Matthieu Dubarry,et al.  From single cell model to battery pack simulation for Li-ion batteries , 2009 .

[199]  R. Katiyar,et al.  Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films , 2005 .

[200]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[201]  Ganesan Nagasubramanian,et al.  Modeling capacity fade in lithium-ion cells , 2005 .

[202]  Pier Paolo Prosini,et al.  Determination of the chemical diffusion coefficient of lithium in LiFePO4 , 2002 .

[203]  K. Fung,et al.  Study on the structural change and lithium ion conductivity for the perovskite-type LaAlO3–La0.50Li0.50TiO3 solid solution , 2007 .

[204]  K. Takagi,et al.  Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells , 2004 .

[205]  José Manuel Amarilla,et al.  High temperature co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization , 2002 .

[206]  M. Egashira,et al.  Lithium ion conduction in ionic liquid-based gel polymer electrolyte , 2008 .

[207]  W. Jaegermann,et al.  Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries , 2008 .

[208]  M. Nakayama,et al.  Lithium-ion conduction in elastomeric binder in Li-ion batteries , 2007 .

[209]  W. Lu,et al.  Control morphology of nanostructures with electric field , 2009 .

[210]  V. Thangadurai,et al.  Tailoring ceramics for specific applications: A case study of the development of all-solid-state lithium batteries , 2005 .

[211]  Sun-Yuan Tsay,et al.  Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route , 2004 .

[212]  K. Striebel,et al.  Electrochemical Behavior of LiMn2 O 4 and LiCoO2 Thin Films Produced with Pulsed Laser Deposition , 1996 .

[213]  J. Dygas,et al.  Conductivity and dielectric relaxation phenomena in lithium manganese spinel , 2005 .

[214]  D. McLean,et al.  Grain boundaries in metals , 1958 .

[215]  E. Peled,et al.  A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li‐Ion Batteries , 1999 .

[216]  M. Dresselhaus,et al.  Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery , 1996 .

[217]  D. Aurbach,et al.  Comparison between Cottrell diffusion and moving boundary models for determination of the chemical diffusion coefficients in ion-insertion electrodes , 2005 .

[218]  Leonard C. Feldman,et al.  Electronic thin film science : for electrical engineers and materials scientists , 1996 .

[219]  I. Uchida,et al.  ION- AND ELECTRON-TRANSPORT PROPERTIES OF A SINGLE PARTICLE OF DISORDERED CARBON DURING THE LITHIUM INSERTION REACTION , 1999 .

[220]  D. Aurbach,et al.  Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides , 1998 .

[221]  William D. Callister,et al.  Materials science and engineering an introduction / by William D. Callister, Jr. , 1997 .