The Power of a Propositional Constant
暂无分享,去创建一个
[1] Algebraic logic , 1985, Problem books in mathematics.
[2] Krister Segerberg. Post Completeness in Modal Logic , 1972, J. Symb. Log..
[3] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[4] Robert S. Streett,et al. Propositional Dynamic Logic of Looping and Converse Is Elementarily Decidable , 1982, Inf. Control..
[5] H. P. Rickman,et al. ESCAPISM: THE LOGICAL BASIS OF ETHICS , 1963 .
[6] A. Chagrov,et al. Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .
[7] P. Nowell-Smith,et al. I.—ESCAPISM: THE LOGICAL BASIS OF ETHICS , 1960 .
[8] Kit Fine,et al. The Logics Containing S 4.3 , 1971 .
[9] Robert Goldblatt,et al. Monadic Bounded Algebras , 2010, Stud Logica.
[10] Marcus Kracht,et al. Semisimple Varieties of Modal Algebras , 2006, Stud Logica.
[11] Günter Asser,et al. Zeitschrift für mathematische Logik und Grundlagen der Mathematik , 1955 .
[12] Tadeusz Litak,et al. On Notions of Completeness Weaker than Kripke Completeness , 2004, Advances in Modal Logic.
[13] Robert Goldblatt. An algebraic study of well-foundedness , 1985, Stud Logica.
[14] Krister Segerberg,et al. An essay in classical modal logic , 1971 .
[15] D. Gabbay,et al. Handbook of Philosophical Logic, Volume II. Extensions of Classical Logic , 1986 .
[16] Steven K. Thomason,et al. Semantic analysis of tense logics , 1972, Journal of Symbolic Logic.
[17] R. A. Bull. That All Normal Extensions of S4.3 Have the Finite Model Property , 1966 .
[18] Saul A. Kripke. SEMANTICAL ANALYSIS OF MODAL LOGIC II. NON-NORMAL MODAL PROPOSITIONAL CALCULI , 2014 .
[19] Timothy Williamson. Continuum Many Maximal Consistent Normal Bimodal Logics with Inverses , 1998, Notre Dame J. Formal Log..
[20] K. Fine. Logics containing K4. Part II , 1985, Journal of Symbolic Logic.
[21] Rohan French. Denumerably Many Post-Complete Normal Modal Logics with Propositional Constants , 2012, Notre Dame J. Formal Log..
[22] David Makinson,et al. Some embedding theorems for modal logic , 1971, Notre Dame J. Formal Log..
[23] Alan Ross Anderson,et al. A REDUCTION OF DEONTIC LOGIC TO ALETHIC MODAL LOGIC , 1958 .
[24] Guram Bezhanishvili,et al. An Algebraic Approach to Subframe Logics. Modal Case , 2011, Notre Dame J. Formal Log..
[25] Kit Fine. Logics Containing K4. Part I , 1974, J. Symb. Log..
[26] K. Segerberg. That Every Extension Of S4.3 is Normal , 1975 .
[27] Leo Esakia,et al. Intuitionistic logic and modality via topology , 2004, Ann. Pure Appl. Log..
[28] Saul A. Kripke,et al. Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .
[29] P. Soden. University of Washington Press , 2008 .
[30] Tomasz Kowalski,et al. Varieties of Tense Algebras , 1998, Reports Math. Log..
[31] Bernhard Beckert,et al. Dynamic Logic , 2007, The KeY Approach.
[32] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[33] A. Tarski,et al. Boolean Algebras with Operators. Part I , 1951 .
[34] Kit Fine,et al. Logics containing K4. Part I , 1974, Journal of Symbolic Logic.
[35] J. Ferreirós. From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95 , 2004 .
[36] Emil L. Post. Introduction to a General Theory of Elementary Propositions , 1921 .