Highly reversible Na and K metal anodes enabled by carbon paper protection

[1]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[2]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[3]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[4]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[5]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[6]  A. Dolocan,et al.  In-Situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate , 2017 .

[7]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[8]  Qian Sun,et al.  Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition , 2017, Advanced materials.

[9]  M. Wilkening,et al.  An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. , 2017, ChemSusChem.

[10]  Yiying Wu,et al.  Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. , 2017, Journal of the American Chemical Society.

[11]  Qian Sun,et al.  Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. , 2017, Nano letters.

[12]  Hongkyung Lee,et al.  Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer. , 2017, ACS applied materials & interfaces.

[13]  Huan Wang,et al.  Critical Role of Ultrathin Graphene Films with Tunable Thickness in Enabling Highly Stable Sodium Metal Anodes. , 2017, Nano letters.

[14]  Shubin Yang,et al.  Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes , 2017 .

[15]  W. Luo,et al.  Ultrathin Surface Coating Enables the Stable Sodium Metal Anode , 2017 .

[16]  Shubin Yang,et al.  Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes. , 2017, ACS applied materials & interfaces.

[17]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[18]  Huakun Liu,et al.  Room‐Temperature Sodium‐Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry , 2017 .

[19]  A. Kovacs,et al.  Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries , 2017 .

[20]  Jun Lu,et al.  Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles. , 2017, Nano letters.

[21]  Quan-hong Yang,et al.  Processable and Moldable Sodium-Metal Anodes. , 2017, Angewandte Chemie.

[22]  Shaofei Wang,et al.  Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects , 2017 .

[23]  Qian Sun,et al.  Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes , 2018 .

[24]  Jun Deng,et al.  Rational Synthesis and Assembly of Ni3S4 Nanorods for Enhanced Electrochemical Sodium-Ion Storage. , 2018, ACS nano.

[25]  S. Choudhury,et al.  Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. , 2018, Angewandte Chemie.