High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems

Chemotaxis refers to mechanisms by which cellular motion occurs in response to an external stimulus, usually a chemical one. Chemotaxis phenomenon plays an important role in bacteria/cell aggregation and pattern formation mechanisms, as well as in tumor growth. A common property of all chemotaxis systems is their ability to model a concentration phenomenon that mathematically results in rapid growth of solutions in small neighborhoods of concentration points/curves. The solutions may blow up or may exhibit a very singular, spiky behavior. There is consequently a need for accurate and computationally efficient numerical methods for the chemotaxis models. In this work, we develop and study novel high-order hybrid finite-volume-finite-difference schemes for the Patlak-Keller-Segel chemotaxis system and related models. We demonstrate high-accuracy, stability and computational efficiency of the proposed schemes in a number of numerical examples.

[1]  C. Patlak Random walk with persistence and external bias , 1953 .

[2]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.

[3]  Knut-Andreas Lie,et al.  On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..

[4]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[5]  Angela Stevens,et al.  A Note on non-simultaneous blow-up for a drift-diffusion model , 2010, Differential and Integral Equations.

[6]  Antonio Fasano,et al.  EQUILIBRIUM OF TWO POPULATIONS SUBJECT TO CHEMOTAXIS , 2004 .

[7]  John Tyler Bonner,et al.  The Cellular Slime Molds. , 1967 .

[8]  J. V. Hurley,et al.  Chemotaxis , 2005, Infection.

[9]  A. Marrocco,et al.  Numerical simulation of chemotactic bacteria aggregation via mixed finite elements , 2003 .

[10]  Alexander Kurganov,et al.  Numerical study of two-species chemotaxis models , 2013 .

[11]  S. Eykyn Microbiology , 1950, The Lancet.

[12]  Alexander Kurganov,et al.  New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model , 2008, SIAM J. Numer. Anal..

[13]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[14]  Yekaterina Epshteyn,et al.  Upwind-Difference Potentials Method for Patlak-Keller-Segel Chemotaxis Model , 2012, J. Sci. Comput..

[15]  Gershon Wolansky,et al.  Multi-components chemotactic system in the absence of conflicts , 2002, European Journal of Applied Mathematics.

[16]  M. Sussman,et al.  Cellular Slime Molds , 1974 .

[17]  K. P.,et al.  HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .

[18]  Angela Stevens,et al.  Simultaneous finite time blow-up in a two-species model for chemotaxis , 2009 .

[19]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.

[20]  Stefan Turek,et al.  A Flux-Corrected Finite Element Method for Chemotaxis Problems , 2010, Comput. Methods Appl. Math..

[21]  M. Cohen,et al.  Wave propagation in the early stages of aggregation of cellular slime molds. , 1971, Journal of theoretical biology.

[22]  J. Murray,et al.  Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.

[23]  John Tyler Bonner,et al.  The Cellular Slime Molds , 1967 .

[24]  H. Berg,et al.  Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.

[25]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[26]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[27]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[28]  Carlos Conca,et al.  Sharp condition for blow-up and global existence in a two species chemotactic Keller–Segel system in 2 , 2012, European Journal of Applied Mathematics.

[29]  Benoît Perthame,et al.  PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .

[30]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[31]  J. Adler Chemotaxis in bacteria. , 1976, Journal of supramolecular structure.

[32]  Yekaterina Epshteyn,et al.  Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model , 2009, J. Sci. Comput..

[33]  Dirk Horstmann,et al.  Keller-Segel model in chemotaxis and its consequences , 2003 .

[34]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[35]  Sebastian Noelle,et al.  Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds , 2011, 1501.03628.

[36]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[37]  Takayoshi Ogawa,et al.  Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type , 2003 .

[38]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[39]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[40]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[41]  H. Berg,et al.  Spatio-temporal patterns generated by Salmonella typhimurium. , 1995, Biophysical journal.

[42]  Angela Stevens,et al.  Simultaneous Blowup and Mass Separation During Collapse in an Interacting System of Chemotactic Species , 2012 .

[43]  Norikazu Saito,et al.  Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis , 2007 .

[44]  Alexander Kurganov,et al.  A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models , 2008, Numerische Mathematik.

[45]  B. Perthame Transport Equations in Biology , 2006 .

[46]  L. G. Stern,et al.  Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.

[47]  Jerome Percus,et al.  Nonlinear aspects of chemotaxis , 1981 .

[48]  Yu Liu,et al.  New adaptive artificial viscosity method for hyperbolic systems of conservation laws , 2012, J. Comput. Phys..

[49]  Francis Filbet,et al.  A finite volume scheme for the Patlak–Keller–Segel chemotaxis model , 2006, Numerische Mathematik.

[50]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[51]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[52]  Carlos Conca,et al.  Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in 2 , 2011, European Journal of Applied Mathematics.

[53]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[54]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .