High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems
暂无分享,去创建一个
Alexander Kurganov | Alina Chertock | Yekaterina Epshteyn | Hengrui Hu | A. Chertock | A. Kurganov | Y. Epshteyn | Hengrui Hu | Alina Chertock
[1] C. Patlak. Random walk with persistence and external bias , 1953 .
[2] L. Segel,et al. Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.
[3] Knut-Andreas Lie,et al. On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..
[4] José A. Carrillo,et al. Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .
[5] Angela Stevens,et al. A Note on non-simultaneous blow-up for a drift-diffusion model , 2010, Differential and Integral Equations.
[6] Antonio Fasano,et al. EQUILIBRIUM OF TWO POPULATIONS SUBJECT TO CHEMOTAXIS , 2004 .
[7] John Tyler Bonner,et al. The Cellular Slime Molds. , 1967 .
[8] J. V. Hurley,et al. Chemotaxis , 2005, Infection.
[9] A. Marrocco,et al. Numerical simulation of chemotactic bacteria aggregation via mixed finite elements , 2003 .
[10] Alexander Kurganov,et al. Numerical study of two-species chemotaxis models , 2013 .
[11] S. Eykyn. Microbiology , 1950, The Lancet.
[12] Alexander Kurganov,et al. New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model , 2008, SIAM J. Numer. Anal..
[13] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[14] Yekaterina Epshteyn,et al. Upwind-Difference Potentials Method for Patlak-Keller-Segel Chemotaxis Model , 2012, J. Sci. Comput..
[15] Gershon Wolansky,et al. Multi-components chemotactic system in the absence of conflicts , 2002, European Journal of Applied Mathematics.
[16] M. Sussman,et al. Cellular Slime Molds , 1974 .
[17] K. P.,et al. HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .
[18] Angela Stevens,et al. Simultaneous finite time blow-up in a two-species model for chemotaxis , 2009 .
[19] H. Berg,et al. Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.
[20] Stefan Turek,et al. A Flux-Corrected Finite Element Method for Chemotaxis Problems , 2010, Comput. Methods Appl. Math..
[21] M. Cohen,et al. Wave propagation in the early stages of aggregation of cellular slime molds. , 1971, Journal of theoretical biology.
[22] J. Murray,et al. Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.
[23] John Tyler Bonner,et al. The Cellular Slime Molds , 1967 .
[24] H. Berg,et al. Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.
[25] J. Brandts. [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .
[26] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[27] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[28] Carlos Conca,et al. Sharp condition for blow-up and global existence in a two species chemotactic Keller–Segel system in 2 , 2012, European Journal of Applied Mathematics.
[29] Benoît Perthame,et al. PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .
[30] V. Nanjundiah,et al. Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.
[31] J. Adler. Chemotaxis in bacteria. , 1976, Journal of supramolecular structure.
[32] Yekaterina Epshteyn,et al. Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model , 2009, J. Sci. Comput..
[33] Dirk Horstmann,et al. Keller-Segel model in chemotaxis and its consequences , 2003 .
[34] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[35] Sebastian Noelle,et al. Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds , 2011, 1501.03628.
[36] M. A. Herrero,et al. A blow-up mechanism for a chemotaxis model , 1997 .
[37] Takayoshi Ogawa,et al. Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type , 2003 .
[38] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[39] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.
[40] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[41] H. Berg,et al. Spatio-temporal patterns generated by Salmonella typhimurium. , 1995, Biophysical journal.
[42] Angela Stevens,et al. Simultaneous Blowup and Mass Separation During Collapse in an Interacting System of Chemotactic Species , 2012 .
[43] Norikazu Saito,et al. Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis , 2007 .
[44] Alexander Kurganov,et al. A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models , 2008, Numerische Mathematik.
[45] B. Perthame. Transport Equations in Biology , 2006 .
[46] L. G. Stern,et al. Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.
[47] Jerome Percus,et al. Nonlinear aspects of chemotaxis , 1981 .
[48] Yu Liu,et al. New adaptive artificial viscosity method for hyperbolic systems of conservation laws , 2012, J. Comput. Phys..
[49] Francis Filbet,et al. A finite volume scheme for the Patlak–Keller–Segel chemotaxis model , 2006, Numerische Mathematik.
[50] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[51] K. Painter,et al. A User's Guide to Pde Models for Chemotaxis , 2022 .
[52] Carlos Conca,et al. Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in 2 , 2011, European Journal of Applied Mathematics.
[53] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[54] David I. Ketcheson,et al. Strong stability preserving runge-kutta and multistep time discretizations , 2011 .