Analysis of two dimensions sparse multicylinder scattering problem using DD-FDTD method

An algorithm of two-dimensional (2-D) domain decomposition finite-difference time-domain (DD-FDTD) using in sparse multicylinders scattering problem is proposed in this paper. The idea of domain decomposition is introduced to divide the sparse problem domain into several subdomains. All of subdomains are connected by means of the 2-D time domain Green's function. As a result, a great deal of meshes memory between cylinders is removed, especially when the distances between cylinders become large. Furthermore, the coupling between cylinders can be regarded as the equivalent cylindrical wave irradiations. The incident signals of the equivalent cylindrical waves are expressed as cylindrical wave input field array (CWIFA) according to Huygens principle. Then the calculation time is significantly reduced. The near-field to far-field transformation is used to obtain the equivalent cylindrical wave; as a result, the calculation time can be reduced further. The new method has been demonstrated in 2-D multicylinders scattering problem. Numerical results are in good agreement with the results obtained using classical FDTD method and moment of methods (MM).