Covariance Symmetries Detection in PolInSAR Data

In the last two decades, the use of synthetic aperture radar (SAR) for remote sensing purposes has significantly developed due to improvements in the quality and the availability of the images. Two powerful SAR techniques, namely, polarimetry and interferometry, have further increased the range of applications of the sensed data. Using polarimetry, geometrical properties and geophysical parameters, such as shape, roughness, texture, and moisture content, can be retrieved with considerable accuracy, while interferometric information may be used to extract vertical information with accuracy less than 1 cm. In this paper, the potential of using joint polarimetry and interferometry techniques in SAR data (PolInSAR) for the purpose of SAR image classification is investigated. To achieve this goal, we extend a covariance symmetry detection framework to the PolInSAR scenario. The proposed approach will be shown to be able to exploit the peculiar structures of the covariance matrices of PolInSAR images to discriminate structures within the image. Results using real-SAR data are presented to validate the effectiveness of the proposed approach.

[1]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[2]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[3]  Stefano Tebaldini,et al.  Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L-Bands , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Fuk K. Li,et al.  Symmetry properties in polarimetric remote sensing , 1992 .

[5]  S. Stanko,et al.  High resolution dual-channel SAR-system for airborne applications , 2017, 2017 18th International Radar Symposium (IRS).

[6]  Irena Hajnsek,et al.  Forest Height Estimation by Means of Pol-InSAR Data Inversion: The Role of the Vertical Wavenumber , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[8]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[9]  Thuy Le Toan,et al.  Forest Modeling For Height Inversion Using Single-Baseline InSAR/Pol-InSAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Marco Lavalle,et al.  Full and Compact Polarimetric Radar Interferometry for Vegetation Remote Sensing , 2009 .

[11]  Juan M. Lopez-Sanchez,et al.  Applying the Freeman–Durden Decomposition Concept to Polarimetric SAR Interferometry , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Jean-Claude Souyris,et al.  Compact polarimetry based on symmetry properties of geophysical media: the /spl pi//4 mode , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[13]  J. Zyl,et al.  Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses , 1990 .

[14]  Extension of the Optical Diffraction Analysis Technique for Estimating Forest Canopy Geometry. , 1979 .

[15]  Carmine Clemente,et al.  Detecting Covariance Symmetries in Polarimetric SAR Images , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Boularbah Souissi,et al.  Interferometric Coherence Optimization: A Comparative Study , 2013, 2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications.

[17]  Laurent Ferro-Famil,et al.  Multibaseline Polarimetric SAR Interferometry Coherence Optimization , 2008, IEEE Geoscience and Remote Sensing Letters.

[18]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  佐藤 晃一,et al.  Polarimetric SAR Interferometryによる森林の特徴について , 2000 .

[20]  Yasser Maghsoudi,et al.  Assessment of the Potential of H/A/Alpha Decomposition for Polarimetric Interferometric SAR Data , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[21]  M. Moghaddam,et al.  Effect of medium symmetries in limiting the number of parameters estimated with polarimetric interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[22]  S. R. Cloude,et al.  Tree-height Retrieval Using Single Baseline Polarimetric Interferometry , 2003 .

[23]  S. Kay Exponentially embedded families - new approaches to model order estimation , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[24]  W. Xiong Communications Comments on "Compact Polarimetry Based on Symmetry Properties of Geophysical Media: The π/4 Mode" , 2006 .

[25]  Konstantinos Papathanassiou,et al.  Polarimetric radar interferometry , 1997, Optics & Photonics.

[26]  Marco Lavalle,et al.  A Temporal Decorrelation Model for Polarimetric Radar Interferometers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Xinwu Li,et al.  Combination of PolInSAR and LiDAR Techniques for Forest Height Estimation , 2017, IEEE Geoscience and Remote Sensing Letters.

[28]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[29]  J. Kong,et al.  Theoretical models for polarimetric radar clutter , 1987 .