High Surface Area SOFC Electrode Materials Prepared at Traditional Sintering Temperatures

[1]  S. Jiang,et al.  A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells , 2006 .

[2]  S. Barnett,et al.  A reduced temperature solid oxide fuel cell with nanostructured anodes , 2011 .

[3]  J. Vohs,et al.  Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes , 2006 .

[4]  B. Steele,et al.  Kinetic parameters influencing the performance of IT-SOFC composite electrodes , 2000 .

[5]  Michael D. Gross,et al.  Recent progress in SOFC anodes for direct utilization of hydrocarbons , 2007 .

[6]  Barry F. Smith,et al.  Redox Stability of SrNb x Ti1 − x O3 – YSZ for Use in SOFC Anodes , 2009 .

[7]  Michael D. Gross,et al.  An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ , 2007 .

[8]  J. Vohs,et al.  Evidence of surface-reaction rate limitations in SOFC composite cathodes , 2012 .

[9]  Michael D. Gross,et al.  A Strategy for Achieving High-performance with SOFC Ceramic Anodes , 2007 .

[10]  P. Voorhees,et al.  Observing the microstructural evolution of Ni-Yttria-stabilized zirconia solid oxide fuel cell anodes , 2016 .

[11]  M. Gross,et al.  A Highly Conductive Oxide Anode for Solid Oxide Fuel Cells , 2011 .

[12]  J. Vohs,et al.  The Stability of LSF-YSZ Electrodes Prepared by Infiltration , 2007 .

[13]  M.A.S. Oliveira,et al.  Effect of urea on lead zirconate titanate—Pb(Zr0.52Ti0.48)O3—nanopowders synthesized by the Pechini method , 2005 .

[14]  W. Sitte,et al.  Comparison of oxygen exchange kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3 − δ and La0.6Sr0.4CoO3 − δ , 2012 .

[15]  S. Hall,et al.  The evolution of 'sol-gel' chemistry as a technique for materials synthesis , 2016 .

[16]  Yusu Wang,et al.  Electrical performance of nanostructured strontium-doped lanthanum manganite impregnated onto yttria-stabilized zirconia backbone , 2016 .

[17]  J. Vohs,et al.  A high-performance solid oxide fuel cell anode based on lanthanum strontium vanadate , 2011 .

[18]  J. Irvine,et al.  La-doped SrTiO3 as anode material for IT-SOFC , 2011 .

[19]  K. Sasaki,et al.  Highly redox-resistant solid oxide fuel cell anode materials based on La-doped SrTiO3 by catalyst impregnation strategy , 2016 .

[20]  R. Simpson,et al.  Use of Epoxides in the Sol−Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts , 2001 .

[21]  Young Beom Kim,et al.  Nanopore Patterned Pt Array Electrodes for Triple Phase Boundary Study in Low Temperature SOFC , 2010 .

[22]  J. Vohs,et al.  Fabrication of Sr-Doped LaFeO3 YSZ Composite Cathodes , 2004 .

[23]  Lawrence W. Hrubesh,et al.  New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors , 2001 .

[24]  M. Gross,et al.  Nanostructured SOFC Electrode Scaffolds Prepared via High Temperature in situ Carbon Templating of Hybrid Materials , 2017 .

[25]  Raymond J. Gorte,et al.  High‐Performance SOFC Cathodes Prepared by Infiltration , 2009 .

[26]  S. J. Milne,et al.  Nanopowders of Na0.5K0.5NbO3 Prepared by the Pechini Method , 2009 .

[27]  Suk Won Cha,et al.  Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition , 2013, Nanoscale Research Letters.

[28]  Jingli Luo,et al.  Porous YSZ impregnated with La0.4Sr0.5Ba0.1TiO3 as a possible composite anode for SOFCs fueled with sour feeds , 2012 .

[29]  Steven J. Visco,et al.  Synthesis of Dispersed and Contiguous Nanoparticles in Solid Oxide Fuel Cell Electrodes , 2008 .

[30]  F. Chen,et al.  Nano-structured Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells via an Infiltration/Impregnation Technique , 2010 .

[31]  M. Gross,et al.  Preserving Nanomorphology in YSZ Scaffolds at High Temperatures via In Situ Carbon Templating of Hybrid Materials , 2016 .

[32]  M. Gross,et al.  Insights into the Design of SOFC Infiltrated Electrodes with Optimized Active TPB Density via Mechanistic Modeling , 2014 .

[33]  Raymond J. Gorte,et al.  Characterization of Sr-Doped LaCoO3-YSZ Composites Prepared by Impregnation Methods , 2004 .

[34]  Suk Won Cha,et al.  Application of dense nano-thin platinum films for low-temperature solid oxide fuel cells by atomic layer deposition , 2014 .

[35]  C. Xia,et al.  A particle-layer model for solid-oxide-full-cell cathodes with different structures , 2010 .

[36]  Mogens Bjerg Mogensen,et al.  Kinetic and geometric aspects of solid oxide fuel cell electrodes , 1996 .

[37]  J. Vohs,et al.  Low-Temperature Fabrication of Oxide Composites for Solid-Oxide Fuel Cells , 2004 .

[38]  M. Gross,et al.  The Effect of Vanadium Deficiency on the Stability of Pd and Pt Catalysts in Lanthanum Strontium Vanadate Solid Oxide Fuel Cell Anodes , 2012 .

[39]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[40]  A. N. Busawon,et al.  Ni Infiltration as a Possible Solution to the Redox Problem of SOFC Anodes , 2008 .

[41]  S. Haile Fuel cell materials and components , 2003 .

[42]  Michael Synodis,et al.  A Model to Predict Percolation Threshold and Effective Conductivity of Infiltrated Electrodes for Solid Oxide Fuel Cells , 2013 .

[43]  M. Mogensen,et al.  Development of Planar Metal Supported SOFC with Novel Cermet Anode , 2009, ECS Transactions.

[44]  Guntae Kim,et al.  High Performance SOFC Cathode Prepared by Infiltration of La n + 1Ni n O3 n + 1 (n = 1, 2, and 3) in Porous YSZ , 2011 .