Morse theory and persistent homology for topological analysis of 3D images of complex materials

We develop topologically accurate and compatible definitions for the skeleton and watershed segmentation of a 3D digital object that are computed by a single algorithm. These definitions are based on a discrete gradient vector field derived from a signed distance transform. This gradient vector field is amenable to topological analysis and simplification via For-man's discrete Morse theory and provides a filtration that can be used as input to persistent homology algorithms. Efficient implementations allow us to process large-scale x-ray micro-CT data of rock cores and other materials.

[1]  Gilles Bertrand,et al.  Topological gray-scale watershed transformation , 1997, Optics & Photonics.

[2]  Ulrich Bauer,et al.  Optimal Topological Simplification of Discrete Functions on Surfaces , 2012, Discret. Comput. Geom..

[3]  Pierre Machart Morphological Segmentation , 2009 .

[4]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 2005, International Journal of Computer Vision.

[5]  Laurent Najman,et al.  Watershed of a continuous function , 1994, Signal Process..

[6]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[7]  Bernd Hamann,et al.  A Practical Approach to Morse-Smale Complex Computation: Scalability and Generality , 2008, IEEE Transactions on Visualization and Computer Graphics.

[8]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Gabriella Sanniti di Baja,et al.  Distance-Driven Skeletonization in Voxel Images , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[11]  Jean-Daniel Boissonnat,et al.  Skeletal Structures , 2008, Shape Analysis and Structuring.

[12]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[13]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[14]  Leila De Floriani,et al.  Smale-Like Decomposition and Forman Theory for Discrete Scalar Fields , 2011, DGCI.

[15]  Gilles Bertrand,et al.  Collapses and Watersheds in Pseudomanifolds of Arbitrary Dimension , 2014, Journal of Mathematical Imaging and Vision.

[16]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[17]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[18]  Ingrid Hotz,et al.  Noname manuscript No. (will be inserted by the editor) Efficient Computation of 3D Morse-Smale Complexes and Persistent Homology using Discrete Morse Theory , 2022 .

[19]  Gilles Bertrand,et al.  New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Gregor Jerse,et al.  Ascending and descending regions of a discrete Morse function , 2008, Comput. Geom..

[21]  Thomas Lewiner,et al.  Applications of Forman's discrete Morse theory to topology visualization and mesh compression , 2004, IEEE Transactions on Visualization and Computer Graphics.

[22]  R. Forman Morse Theory for Cell Complexes , 1998 .

[23]  Daniela Giorgi,et al.  Describing shapes by geometrical-topological properties of real functions , 2008, CSUR.

[24]  Gabriella Sanniti di Baja,et al.  On Medial Representations , 2008, CIARP.