The role of grain boundary ferrite evolution and thermal aging on creep cavitation of type 316H austenitic stainless steel

[1]  P. Flewitt,et al.  A comparison of two high spatial resolution imaging techniques for determining carbide precipitate type and size in ferritic 9Cr-1Mo steel. , 2019, Ultramicroscopy.

[2]  T. Van der Donck,et al.  Orientation relationship of the austenite-to-ferrite transformation in austenitic stainless steels due to dissolution corrosion in contact with liquid Pb-Bi eutectic , 2019, Scripta Materialia.

[3]  P. Flewitt,et al.  Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel , 2018, Journal of Materials Science.

[4]  Klaus Scheffler,et al.  Association between Neuroticism and Emotional Face Processing , 2017, Scientific Reports.

[5]  M. G. Burke,et al.  Multiscale correlative tomography : an investigation of creep cavitation in 316 stainless steel Journal Item , 2018 .

[6]  J. R. Yang,et al.  Investigation of idiomorphic ferrite and allotriomorphic ferrite using electron backscatter diffraction technique , 2017 .

[7]  M. G. Burke,et al.  Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. , 2016, Ultramicroscopy.

[8]  Thomas Bligh Scott,et al.  The role of ferrite in Type 316H austenitic stainless steels on the susceptibility to creep cavitation , 2015 .

[9]  Sarah J. Haigh,et al.  Multiscale 3D analysis of creep cavities in AISI type 316 stainless steel , 2015 .

[10]  K. Tsuzaki,et al.  Determination of α/γ phase boundaries in the Fe–Cr–Ni–Mn quaternary system with a diffusion-multiple method , 2014 .

[11]  A. Fe-Mn-Ni An Evaluation of Austenitic Fe-Mn-Ni Weld Metal for Dissimilar Metal Welding , 2013 .

[12]  Heon-Young Ha,et al.  Precipitation of Second Phases in High-Interstitial-Alloyed Austenitic Steel , 2011 .

[13]  P. Midgley,et al.  Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel , 2011 .

[14]  D. Smith,et al.  Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture , 2010 .

[15]  H. Bhadeshia,et al.  Dual orientation and variant selection during diffusional transformation of austenite to allotriomorphic ferrite , 2010 .

[16]  H. Schaeben,et al.  Texture Analysis with MTEX – Free and Open Source Software Toolbox , 2010 .

[17]  D. Raabe,et al.  Evaluation of the Crystallographic Orientation Relationships between FCC and BCC Phases in TRIP Steels , 2009 .

[18]  Philip J. Withers,et al.  Residual stress driven creep cracking in AISI Type 316 stainless steel , 2008 .

[19]  J. Jonas,et al.  Observations of the Gibeon meteorite and the inverse Greninger-Troiano orientation relationship , 2006 .

[20]  S. Nam,et al.  Correlation between the carbide morphology and cavity nucleation in an austenitic stainless steels under creep-fatigue , 2004 .

[21]  D. Raabe,et al.  Relation between microstructure and mechanical properties of a low-alloyed TRIP steel , 2004 .

[22]  M. W. Spindler,et al.  The multiaxial creep ductility of austenitic stainless steels , 2004 .

[23]  P. Withers,et al.  Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel , 2004 .

[24]  S. Nam,et al.  Improvement of creep-fatigue life by the modification of carbide characteristics through grain boundary serration in an AISI 304 stainless steel , 2003 .

[25]  Mingxing Zhang,et al.  Accurate orientation relationship between ferrite and austenite in low carbon martensite and granular bainite , 2002 .

[26]  S. Nam,et al.  A study on the crack initiation and growth from δ-ferrite/γ phase interface under continuous fatigue and creep-fatigue conditions in type 304L stainless steels , 2002 .

[27]  Angelo Fernando Padilha,et al.  Decomposition of Austenite in Austenitic Stainless Steels , 2002 .

[28]  S. Nam,et al.  Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel , 2001 .

[29]  S. Nam,et al.  The effect of δ-ferrite on fatigue cracks in 304L steels , 2000 .

[30]  Tae-Ho Lee,et al.  Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 °C , 2000 .

[31]  S. Nam,et al.  The fatigue crack initiation at the interface between matrix and δ-ferrite in 304L stainless steel , 1998 .

[32]  L. Schäfer Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel , 1998 .

[33]  Y. Yoon,et al.  Characterization of the cavity nucleation factor for life prediction under creep-fatigue interaction , 1996, Journal of Materials Science.

[34]  H. Aaronson Atomic mechanisms of diffusional nucleation and growth and comparisons with their counterparts in shear transformations , 1993 .

[35]  H. Aaronson,et al.  Crystallography and interfacial structure of proeutectoid α grain boundary allotriomorphs in a hypoeutectoid TiCr alloy , 1991 .

[36]  S. Ortner A stem study of the effect of precipitation on grain boundary chemistry in AISI 304 steel , 1991 .

[37]  H. Aaronson,et al.  Crystallographic and mechanistic aspects of growth by shear and by diffusional processes , 1990 .

[38]  M. Kocak,et al.  Cracks at the ferrite-austenite interface , 1990 .

[39]  H. Aaronson,et al.  The kinetics of ferrite nucleation at austenite grain boundaries in Fe-C alloys , 1988 .

[40]  H. Aaronson,et al.  Interfacial structure of grain boundary α allotriomorphs in a hypoeutectoid TiCr alloy , 1988 .

[41]  S. Majumdar,et al.  Creep cavitation and grain boundary structure in type 304 stainless steel , 1986 .

[42]  R. Raj,et al.  Effect of boundary structure on slip-induced cavitation in polycrystalline nickel , 1984 .

[43]  B. F. Dyson,et al.  Continuous cavity nucleation and creep fracture , 1983 .

[44]  R. Hales A METHOD OF CREEP DAMAGE SUMMATION BASED ON ACCUMULATED STRAIN FOR THE ASSESSMENT OF CREEP‐FATIGUE ENDURANCE , 1983 .

[45]  L. Stoter Thermal ageing effects in AISI type 316 stainless steel , 1981 .

[46]  H. Aaronson,et al.  Part II crystallography and morphology of the β → ζ massive transformation in Ag-26 a/o Al , 1980 .

[47]  H. Aaronson,et al.  Thickening kinetics of proeutectoid ferrite plates in Fe-C alloys , 1975 .

[48]  H. Grimmer,et al.  Disorientations and coincidence rotations for cubic lattices , 1974 .

[49]  H. Grimmer,et al.  Coincidence-site lattices and complete pattern-shift in cubic crystals , 1974 .

[50]  J. D. Ayers,et al.  A crystallographic study of massive precipitates in Cu-Zn and Ag-Zn alloys utilizing selected area electron channelling , 1972 .

[51]  Brigitte Weiss,et al.  Phase instabilities during high temperature exposure of 316 austenitic stainless steel , 1972 .

[52]  I. Le May,et al.  Metallographic observations on the formation and occurrence of ferrite, sigma phase, and carbides in austenitic stainless steels: Part II: Studies of AISI Type 316 Stainless Steel , 1970 .

[53]  Tsu-Wei Chou,et al.  Stress Distribution in a Bimaterial Plate under Uniform External Loadings , 1970 .

[54]  L. Singhal,et al.  The formation of ferrite and sigma-phase in some austenitic stainless steels , 1968 .

[55]  P. Ryder,et al.  Crystallography of the precipitation of ferrite on austenite grain boundaries in a Co + 20% Fe alloy , 1967 .

[56]  D. Brandon,et al.  The structure of high-angle grain boundaries , 1966 .

[57]  P. Ryder,et al.  The crystallographic analysis of grain-boundary precipitation , 1966 .