Wide-angle nonmechanical beam steering using liquid lenses.

Nonmechanical beam steering is a rapidly growing branch of adaptive optics with applications such as light detection and ranging, imaging, optical communications, and atomic physics. Here, we present an innovative technique for one- and two-dimensional beam steering using multiple tunable liquid lenses. We use an approach in which one lens controls the spot divergence, and one to two decentered lenses act as prisms and steer the beam. Continuous 1D beam steering was demonstrated, achieving steering angles of ±39° using two tunable liquid lenses. The beam scanning angle was further enhanced to ±75° using a fisheye lens. By adding a third tunable liquid lens, we achieved 2D beam steering of ±75°. In this approach, the divergence of the scanning beam is controlled at all steering angles.

[1]  Hideo Tanaka,et al.  In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy. , 2005, Journal of biomedical optics.

[2]  Hakki H. Refai,et al.  Digital micromirror device for optical scanning applications , 2007 .

[3]  M. Harris,et al.  Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging. , 1994, Applied optics.

[4]  Juliet T Gopinath,et al.  Adaptive electrowetting lens-prism element. , 2015, Optics express.

[5]  Scott R. Davis,et al.  Analog, non-mechanical beam-steerer with 80 degree field of regard , 2008, SPIE Defense + Commercial Sensing.

[6]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[7]  Qiong-Hua Wang,et al.  Liquid prism for beam tracking and steering , 2012 .

[8]  K. Falta,et al.  Digital MEMS for optical switching , 2002, IEEE Commun. Mag..

[9]  Joachim Janes,et al.  High-Q MEMS Resonators for Laser Beam Scanning Displays , 2012, Micromachines.

[10]  Jason Heikenfeld,et al.  Agile wide-angle beam steering with electrowetting microprisms. , 2006, Optics express.

[11]  Michael J. Escuti,et al.  Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings , 2008, Optical Engineering + Applications.

[12]  Jiangtao Cheng,et al.  Adaptive beam tracking and steering via electrowetting-controlled liquid prism , 2011 .

[13]  Edward A. Watson Analysis of beam steering with decentered microlens arrays , 1993 .

[14]  Da-Ting Lin,et al.  Multi-photon laser scanning microscopy using an acoustic optical deflector. , 2002, Biophysical journal.

[15]  Tsu-Chin Tsao,et al.  Adaptive control of a tilt mirror for laser beam steering , 2004, Proceedings of the 2004 American Control Conference.

[16]  Philip J. Bos,et al.  Wide-angle achromatic prism beam steering for infrared countermeasure applications , 2003 .

[17]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[18]  M. Blum,et al.  Compact optical design solutions using focus tunable lenses , 2011, Optical Systems Design.

[19]  D. van den Ende,et al.  Electrowetting driven optical switch and tunable aperture. , 2011, Optics express.

[20]  R. Feuerstein,et al.  Integrated Optofluidic Iris , 2012, Journal of Microelectromechanical Systems.

[21]  Hans Zappe,et al.  Optofluidic laser scanner based on a rotating liquid prism. , 2016, Applied optics.

[22]  H Toyoda,et al.  Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator. , 1994, Applied optics.

[23]  M. R. Douglass,et al.  A MEMS-based projection display , 1998, Proc. IEEE.

[24]  Shong-Leih Lee,et al.  Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens. , 2008, Optics express.

[25]  Frieder Mugele,et al.  Recent Developments in Optofluidic Lens Technology , 2016, Micromachines.

[26]  Ramzi N. Zahreddine,et al.  Simulation of electrowetting lens and prism arrays for wavefront compensation. , 2012, Applied optics.

[27]  Abbie T Watnik,et al.  Efficient multibeam large-angle nonmechanical laser beam steering from computer-generated holograms rendered on a liquid crystal spatial light modulator. , 2016, Applied optics.

[28]  Bruno Berge,et al.  Électrocapillarité et mouillage de films isolants par l'eau , 1993 .

[29]  Valentina Emiliani,et al.  LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression. , 2012, Optics express.

[30]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[31]  Large extinction ratio optical electrowetting shutter. , 2016, Optics express.

[32]  Sung Yong Park,et al.  High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method , 2016 .

[33]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[34]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[35]  D. Clarke,et al.  Tunable lenses using transparent dielectric elastomer actuators. , 2013, Optics express.

[36]  F. Mugele,et al.  High speed adaptive liquid microlens array. , 2012, Optics express.

[37]  Sebastian Thrun,et al.  Model based vehicle detection and tracking for autonomous urban driving , 2009, Auton. Robots.

[38]  D. S. Hobbs,et al.  High-efficiency liquid-crystal optical phased-array beam steering. , 1996, Optics letters.

[39]  Chengkuo Lee,et al.  A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator. , 2011, Optics express.