Nonlinear evolution inclusions: Topological characterizations of solution sets and applications

This paper deals with a nonlinear delay differential inclusion of evolution type involving m-dissipative operator and source term of multi-valued type in a Banach space. Under rather mild conditions, the Rδ-structure of C0-solution set is studied on compact intervals, which is then used to obtain the Rδ-property on non-compact intervals. Secondly, the result about the structure is furthermore employed to show the existence of C0-solutions for the inclusion (mentioned above) subject to nonlocal condition defined on right half-line. No nonexpansive condition on nonlocal function is needed. As samples of applications, we consider a partial differential inclusion with time delay and then with nonlocal condition at the end of the paper.

[1]  R. Bader,et al.  On the solution sets of differential inclusions and the periodic problem in Banach spaces , 2003 .

[2]  G. Gabor,et al.  Structure of the solution set to impulsive functional differential inclusions on the half-line , 2012 .

[3]  Orlando Lopes,et al.  α-contractions and attractors for dissipative semilinear hyperbolic equations and systems , 1991 .

[4]  K. Deng,et al.  Exponential Decay of Solutions of Semilinear Parabolic Equations with Nonlocal Initial Conditions , 1993 .

[5]  I. I. Vrabie,et al.  A class of nonlinear evolution equations subjected to nonlocal initial conditions , 2010 .

[6]  Approximate Controllability for Systems Governed by Nonlinear Volterra Type Equations , 2012 .

[7]  Hellmuth Kneser,et al.  Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen, das der Lipschitzschen Bedingung nicht genügt [7–23] , 2005 .

[8]  D. M. Hyman On decreasing sequences of compact absolute retracts , 1969 .

[9]  Optimal control of nonlinear evolution inclusions , 1990 .

[10]  Carja Viability, Invariance and Applications , 2013 .

[11]  J. Dugundji An extension of Tietze's theorem. , 1951 .

[12]  V. R. Nosov,et al.  Mathematical theory of control systems design , 1996 .

[13]  G. Gabor Some results on existence and structure of solution sets to differential inclusions on the halfline , 2002 .

[14]  Sergiu Aizicovici,et al.  Existence results for a class of abstract nonlocal Cauchy problems , 2000 .

[15]  Masuo Fukuhara,et al.  Sur les systèmes des équations différentielles ordinaires , 1928 .

[16]  L. Górniewicz,et al.  Topological structure of solution sets to multi-valued asymptotic problems. , 2000 .

[17]  L. Górniewicz Topological Fixed Point Theory of Multivalued Mappings , 1999 .

[18]  J. Andres,et al.  Topological structure of solution sets to asymptotic boundary value problems , 2010 .

[19]  Shouchuan Hu,et al.  On the Topological Regularity of the Solution Set of Differential Inclusions with Constraints , 1994 .

[20]  I. I. Vrabie,et al.  Compactness Methods for Nonlinear Evolutions , 1995 .

[21]  D. O’Regan Topological structure of solution sets in Fréchet spaces: The projective limit approach , 2006 .

[22]  A. Ülger Weak compactness in L1(μ, X) , 1991 .

[23]  Valeri Obukhovskii,et al.  Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces , 2011 .

[24]  Grzegorz Gabor,et al.  Topological structure of solution sets to differential problems in Fréchet spaces , 2009 .

[25]  J. Garcia-Falset Existence results and asymptotic behavior for nonlocal abstract Cauchy problems , 2008 .

[26]  G. Gabor On the acyclicity of fixed point sets of multivalued maps , 1999 .

[27]  P. Zhu,et al.  Non-autonomous evolution inclusions with nonlocal history conditions: Global integral solutions , 2013 .

[28]  I. I. Vrabie,et al.  Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions , 2012 .

[29]  Jan Andres,et al.  Boundary value problems on infinite intervals , 1999 .

[30]  Jin Liang,et al.  A note on the fractional Cauchy problems with nonlocal initial conditions , 2011, Appl. Math. Lett..

[31]  J. Myjak,et al.  On the structure of the set of solutions of the Darboux problem for hyperbolic equations , 1986, Proceedings of the Edinburgh Mathematical Society.

[32]  Qianyu Zhu On the solution set of differential inclusions in Banach space , 1991 .

[33]  L. Górniewicz,et al.  Acyclicity of solution sets to functional inclusions , 2002 .

[34]  V. Lakshmikantham,et al.  Nonlinear differential equations in abstract spaces , 1981 .

[35]  Karol Borsuk,et al.  Theory Of Retracts , 1967 .

[36]  J. Yorke SPACES OF SOLUTIONS , 1969 .

[37]  V. Staicu,et al.  Multivalued evolution equations with nonlocal initial conditions in Banach spaces , 2007 .

[38]  Mouffak Benchohra,et al.  Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions , 2009 .

[39]  Giuseppe Conti,et al.  On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space , 1996 .

[40]  Rong-Nian Wang,et al.  Abstract fractional Cauchy problems with almost sectorial operators , 2012 .

[41]  P. Rubbioni,et al.  On a controllability problem for systems governed by semilinear functional differential inclusions in Banach spaces , 2000 .

[42]  K. Deimling Multivalued Differential Equations , 1992 .

[43]  A remark on second order functional-differential systems , 1993 .

[44]  Marc Lassonde,et al.  Approximation and fixed points for compositions of Rδ-maps , 1994 .

[45]  N. Aronszajn,et al.  Le Correspondant Topologique De L'Unicite Dans La Theorie Des Equations Differentielles , 1942 .

[46]  I. I. Vrabie Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions , 2011 .