A Multilevel Correction Scheme for Nonsymmetric Eigenvalue Problems by Finite Element Methods

A multilevel correction scheme is proposed to solve defective and nodefective of nonsymmetric partial differential operators by the finite element method. The method includes multi correction steps in a sequence of finite element spaces. In each correction step, we only need to solve two source problems on a finer finite element space and two eigenvalue problems on the coarsest finite element space. The accuracy of the eigenpair approximation is improved after each correction step. This correction scheme improves overall efficiency of the finite element method in solving nonsymmetric eigenvalue problems.

[1]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[2]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[3]  K. Kolman,et al.  A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .

[4]  Yidu Yang,et al.  Generalized Rayleigh quotient and finite element two-grid discretization schemes , 2009 .

[5]  Paul Houston,et al.  Adaptive Discontinuous Galerkin Methods for Eigenvalue Problems Arising in Incompressible Fluid Flows , 2009, SIAM J. Sci. Comput..

[6]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[7]  Q. Lin,et al.  A multilevel correction method for Stokes eigenvalue problems and its applications , 2015 .

[8]  Christina Freytag,et al.  Stability And Transition In Shear Flows , 2016 .

[9]  Zhimin Zhang,et al.  Enhancing Eigenvalue Approximation by Gradient Recovery , 2006, SIAM J. Sci. Comput..

[10]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[11]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[12]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  Zhimin Zhang,et al.  Function Value Recovery and Its Application in Eigenvalue Problems , 2012, SIAM J. Numer. Anal..

[15]  Hehu Xie,et al.  A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..

[16]  F. Chatelin Spectral approximation of linear operators , 2011 .

[17]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms for Eigenvalue Problems , 2002 .

[18]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[19]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[20]  Haijun Wu,et al.  Enhancing eigenvalue approximation by gradient recovery on adaptive meshes , 2009 .

[21]  V. V. Shaidurov,et al.  Multigrid Methods for Finite Elements , 1995 .

[22]  Q. Lin,et al.  A Type of Multigrid Method for Eigenvalue Problem , 2011 .

[23]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[24]  Hehu Xie,et al.  A type of multilevel method for the Steklov eigenvalue problem , 2014 .

[25]  Rolf Rannacher,et al.  Adaptive FEM for eigenvalue problems with application in hydrodynamic stability analysis , 2006 .