Attention, intention, and priority in the parietal lobe.

For many years there has been a debate about the role of the parietal lobe in the generation of behavior. Does it generate movement plans (intention) or choose objects in the environment for further processing? To answer this, we focus on the lateral intraparietal area (LIP), an area that has been shown to play independent roles in target selection for saccades and the generation of visual attention. Based on results from a variety of tasks, we propose that LIP acts as a priority map in which objects are represented by activity proportional to their behavioral priority. We present evidence to show that the priority map combines bottom-up inputs like a rapid visual response with an array of top-down signals like a saccade plan. The spatial location representing the peak of the map is used by the oculomotor system to target saccades and by the visual system to guide visual attention.

[1]  D. Spalding The Principles of Psychology , 1873, Nature.

[2]  M. Critchleey [Parietal lobes]. , 1953, Giornale di psichiatria e di neuropatologia.

[3]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[4]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. , 1972, Journal of neurophysiology.

[5]  P. Schiller,et al.  Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. , 1972, Journal of neurophysiology.

[6]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[7]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[8]  V. Mountcastle,et al.  Parietal lobe mechanisms for directed visual attention. , 1977, Journal of neurophysiology.

[9]  V. Mountcastle,et al.  Visual input to the visuomotor mechanisms of the monkey's parietal lobe. , 1977, Science.

[10]  D. Robinson,et al.  Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. , 1978, Journal of neurophysiology.

[11]  P. E. Hallett,et al.  The predictability of saccadic latency in a novel voluntary oculomotor task , 1980, Vision Research.

[12]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[13]  S. Yantis,et al.  Abrupt visual onsets and selective attention: evidence from visual search. , 1984, Journal of experimental psychology. Human perception and performance.

[14]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[15]  R. Andersen,et al.  Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes , 1985, The Journal of comparative neurology.

[16]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[17]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[18]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[19]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[20]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[22]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[23]  Leslie G. Ungerleider,et al.  Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys , 1993, Visual Neuroscience.

[24]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[25]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[26]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[27]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.

[28]  R. Andersen,et al.  Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. , 1996, Journal of neurophysiology.

[29]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[30]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[31]  J. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[32]  R. Andersen,et al.  Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. , 1998, Journal of neurophysiology.

[33]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[34]  R. Andersen,et al.  Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. , 1998, Journal of neurophysiology.

[35]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[36]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[37]  M. Goldberg,et al.  Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task , 1999, Nature Neuroscience.

[38]  Jun Zhang,et al.  Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind , 2000, Nature.

[39]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[40]  Mingsha Zhang,et al.  Neuronal switching of sensorimotor transformations for antisaccades , 2000, Nature.

[41]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[42]  Jacqueline Gottlieb,et al.  The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance , 2000, Vision Research.

[43]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[44]  Zhaoping Li A saliency map in primary visual cortex , 2002, Trends in Cognitive Sciences.

[45]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[46]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[47]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[48]  J. Gallant,et al.  Goal-Related Activity in V4 during Free Viewing Visual Search Evidence for a Ventral Stream Visual Salience Map , 2003, Neuron.

[49]  M. Shadlen,et al.  Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque , 2003, Neuron.

[50]  H. Deubel,et al.  Delayed Saccades, but Not Delayed Manual Aiming Movements, Require Visual Attention Shifts , 2003, Annals of the New York Academy of Sciences.

[51]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[52]  L H Snyder,et al.  Nonspatial saccade-specific activation in area LIP of monkey parietal cortex. , 2003, Journal of neurophysiology.

[53]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[54]  P. Glimcher,et al.  Activity in Posterior Parietal Cortex Is Correlated with the Relative Subjective Desirability of Action , 2004, Neuron.

[55]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[56]  J. Hyvärinen,et al.  Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey , 2004, Experimental Brain Research.

[57]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[58]  B. Fischer,et al.  Express-saccades of the monkey: Reaction times versus intensity, size, duration, and eccentricity of their targets , 2004, Experimental Brain Research.

[59]  J. Maunsell Neuronal representations of cognitive state: reward or attention? , 2004, Trends in Cognitive Sciences.

[60]  Etienne Olivier,et al.  A Deficit in Covert Attention after Parietal Cortex Inactivation in the Monkey , 2004, Neuron.

[61]  Jon Driver,et al.  Revisiting Previously Searched Locations in Visual Neglect: Role of Right Parietal and Frontal Lesions in Misjudging Old Locations as New , 2005, Journal of Cognitive Neuroscience.

[62]  M. Shadlen,et al.  A representation of the hazard rate of elapsed time in macaque area LIP , 2005, Nature Neuroscience.

[63]  Michael L. Platt,et al.  Neural correlates of reward and attention in macaque area LIP , 2006, Neuropsychologia.

[64]  M. Goldberg,et al.  Activity in the Lateral Intraparietal Area Predicts the Goal and Latency of Saccades in a Free-Viewing Visual Search Task , 2006, The Journal of Neuroscience.

[65]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[66]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[67]  Jacqueline Gottlieb,et al.  Integration of Exogenous Input into a Dynamic Salience Map Revealed by Perturbing Attention , 2006, The Journal of Neuroscience.

[68]  Jacqueline Gottlieb,et al.  LIP responses to a popout stimulus are reduced if it is overtly ignored , 2006, Nature Neuroscience.

[69]  J. Assad,et al.  A cognitive signal for the proactive timing of action in macaque LIP , 2006, Nature Neuroscience.

[70]  R. Andersen,et al.  Movement Intention Is Better Predicted than Attention in the Posterior Parietal Cortex , 2006, The Journal of Neuroscience.

[71]  Puiu F. Balan,et al.  Integration of Visuospatial and Effector Information during Symbolically Cued Limb Movements in Monkey Lateral Intraparietal Area , 2006, The Journal of Neuroscience.

[72]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[73]  James W Bisley,et al.  Neural correlates of attention and distractibility in the lateral intraparietal area. , 2006, Journal of neurophysiology.

[74]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[75]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[76]  Parashkev Nachev,et al.  Space and the parietal cortex , 2007, Trends in Cognitive Sciences.

[77]  Michael N. Shadlen,et al.  Probabilistic reasoning by neurons , 2007, Nature.

[78]  J D Crawford,et al.  Frames of reference for gaze saccades evoked during stimulation of lateral intraparietal cortex. , 2007, Journal of neurophysiology.

[79]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[80]  M. Paré,et al.  Temporal processing of saccade targets in parietal cortex area LIP during visual search. , 2007, Journal of neurophysiology.

[81]  E. Brannon,et al.  Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area , 2007, PLoS biology.

[82]  Anna E. Ipata,et al.  Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals , 2008, Experimental Brain Research.

[83]  M. Platt,et al.  Neural Correlates of Social Target Value in Macaque Parietal Cortex , 2008, Current Biology.

[84]  K. Miller,et al.  One-Dimensional Dynamics of Attention and Decision Making in LIP , 2008, Neuron.

[85]  Raymond Klein,et al.  Inhibition of return , 2000, Trends in Cognitive Sciences.

[86]  M. Shadlen,et al.  Decision-making with multiple alternatives , 2008, Nature Neuroscience.

[87]  Jacqueline Gottlieb,et al.  Functional Significance of Nonspatial Information in Monkey Lateral Intraparietal Area , 2009, The Journal of Neuroscience.

[88]  J. Bisley,et al.  Been there, seen that: a neural mechanism for performing efficient visual search. , 2009, Journal of neurophysiology.

[89]  Hidehiko Komatsu,et al.  Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex. , 2009, Journal of neurophysiology.

[90]  David J. Freedman,et al.  Distinct Encoding of Spatial and Nonspatial Visual Information in Parietal Cortex , 2009, The Journal of Neuroscience.

[91]  M. Shadlen,et al.  Representation of Confidence Associated with a Decision by Neurons in the Parietal Cortex , 2009, Science.

[92]  J. Assad,et al.  Direction selectivity of neurons in the macaque lateral intraparietal area. , 2009, Journal of neurophysiology.

[93]  H. Seo,et al.  Lateral Intraparietal Cortex and Reinforcement Learning during a Mixed-Strategy Game , 2009, The Journal of Neuroscience.