Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species.

A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.

[1]  M. Nakao,et al.  Improvement of Spatial Resolution of a Laser-Scanning pH-Imaging Sensor , 1994 .

[2]  Hitoshi Shiku,et al.  An addressable microelectrode array for electrochemical detection. , 2008, Analytical chemistry.

[3]  Claudio Nicolini,et al.  Investigation of carrier transport through silicon wafers by photocurrent measurements , 1994 .

[4]  Teruaki Katsube Light Adressable Potentiometric Chemical Sensing System , 1999 .

[5]  J. Hall,et al.  Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor. , 2000, Biosensors & bioelectronics.

[6]  O. Guenat,et al.  Addressable Microelectrode Arrays: Characterization by Imaging with Scanning Electrochemical Microscopy , 2004 .

[7]  Hiroshi Iwasaki,et al.  High-resolution pH imaging sensor for microscopic observation of microorganisms , 1996 .

[8]  Teruaki Katsube,et al.  Novel type cholinesterase sensor based on SPV measurement technique , 2000 .

[9]  Wolfgang J. Parak,et al.  Lateral resolution of light-addressable potentiometric sensors: an experimental and theoretical investigation , 1997 .

[10]  P. Ciampolini,et al.  Modeling of light-addressable potentiometric sensors , 1997 .

[11]  Makoto Ishida,et al.  Novel CCD-based pH imaging sensor , 1999 .

[12]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[13]  Wolfgang J. Parak,et al.  Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS) , 2004 .

[14]  Hiroshi Iwasaki,et al.  Laser-scanned silicon transducer (LSST) as a multisensor system , 2004 .

[15]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[16]  K. Sawada,et al.  Comparison of label-free ACh-imaging sensors based on CCD and LAPS , 2013 .

[17]  J. W. Parce,et al.  Light-addressable potentiometric sensor for biochemical systems. , 1988, Science.

[18]  M. Schöning,et al.  Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel , 2013 .

[19]  Yen-Heng Lin,et al.  Miniaturized amorphous-silicon based chemical imaging sensor system using a mini-projector as a simplified light-addressable scanning source , 2014 .

[20]  Hiroshi Iwasaki,et al.  Photocurable membranes for ion-selective light-addressable potentiometric sensor , 2002 .

[21]  F. Hafner,et al.  Cytosensor Microphysiometer: technology and recent applications. , 2000, Biosensors & bioelectronics.

[22]  J. Eijkel,et al.  A general model to describe the electrostatic potential at electrolyte oxide interfaces , 1996 .

[23]  Hiroshi Iwasaki,et al.  Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope , 1995 .

[24]  Q. Zhang,et al.  Diagnosis of diabetes by image detection of breath using gas-sensitive LAPS. , 2000, Biosensors & bioelectronics.

[25]  C. Toumazou,et al.  A CMOS-Based ISFET Chemical Imager With Auto-Calibration Capability , 2011, IEEE Sensors Journal.

[26]  Ko-ichiro Miyamoto,et al.  Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution , 2014 .

[27]  Sergio Martinoia,et al.  Light-addressable chemical sensors: Modelling and computer simulations , 1992 .

[28]  Michael J. Schöning,et al.  Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging , 2012 .

[29]  J. Gautrot,et al.  High-sensitivity light-addressable potentiometric sensors using silicon on sapphire functionalized with self-assembled organic monolayers , 2015 .

[30]  Qintao Zhang,et al.  Theoretical analysis and design of submicron-LAPS , 2005 .

[31]  Teruaki Katsube,et al.  Integrated biosensor employing a surface photovoltage technique , 1994 .

[32]  Yunfang Jia,et al.  Graphene oxide modified light addressable potentiometric sensor and its application for ssDNA monitoring. , 2012, The Analyst.

[33]  Y. Ermolenko,et al.  The light-addressable potentiometric sensor for multi-ion sensing and imaging. , 2005, Methods.

[34]  Michael J. Schöning,et al.  A high-density multi-point LAPS set-up using a VCSEL array and FPGA control , 2009 .

[35]  Michael J. Schöning,et al.  PLD-prepared cadmium sensors based on chalcogenide glasses—ISFET, LAPS and μISE semiconductor structures , 2006 .

[36]  J. W. Parce,et al.  Microfabrication in silicon microphysiometry. , 1994, Clinical chemistry.

[37]  John C. Owicki,et al.  Silicon micromachining in the fabrication of biosensors using living cells , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[38]  Monitoring of enzymatic activity and quantitative measurements of substrates by means of a newly designed silicon-based potentiometric sensor , 1994 .

[39]  Arshak Poghossian,et al.  Use of information visualization methods eliminating cross talk in multiple sensing units investigated for a light-addressable potentiometric sensor. , 2010, Analytical chemistry.

[40]  Yiannos Manoli,et al.  Two-Dimensional Imaging of O2, H2O2, and Glucose Distributions by an Array of 400 Individually Addressable Microelectrodes , 1995 .

[41]  Kazuaki Sawada,et al.  Real-Time Two-Dimensional Imaging of Potassium Ion Distribution Using an Ion Semiconductor Sensor with Charged Coupled Device Technology , 2010, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[42]  Chi-Hang Chin,et al.  LAPS with nanoscaled and highly polarized HfO2 by CF4 plasma for NH4+ detection , 2013 .

[43]  Hiroshi Iwasaki,et al.  Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. , 2003, Biosensors & bioelectronics.

[44]  M. Schöning,et al.  Theoretical study and simulation of light‐addressable potentiometric sensors , 2014 .

[45]  Hiroshi Iwasaki,et al.  Immobilization of Urease and Cholinesterase on the Surface of Semiconductor Transducer for the Development of Light-Addressable Potentiometric Sensors , 2004 .

[46]  Hiroshi Iwasaki,et al.  Constant-Current-Mode LAPS (CLAPS) for the Detectionof Penicillin , 2001 .

[47]  Chunsheng Wu,et al.  Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor , 2016 .

[48]  W. Ping,et al.  A novel microphysiometer based on MLAPS for drugs screening. , 2001, Biosensors & bioelectronics.

[49]  Hiroshi Iwasaki,et al.  Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition , 2001 .

[50]  R. Cobbold,et al.  Basic properties of the electrolyte—SiO2—Si system: Physical and theoretical aspects , 1979, IEEE Transactions on Electron Devices.

[51]  A. Bard,et al.  Scanning electrochemical microscopy. Introduction and principles , 1989 .

[52]  C. Munakata,et al.  A scanning photon microscope for non-destructive observations of crystal defect and interface trap distributions in silicon wafers , 1988 .

[53]  T. Yoshinobu,et al.  A Novel Data Acquisition Method for Visualization of Large pH Changes by Chemical Imaging Sensor , 2016 .

[54]  Teruaki Katsube,et al.  Light-addressable suspended-gate gas sensor , 1994 .

[55]  Anirban Das,et al.  A high-speed, flexible-scanning chemical imaging system using a light-addressable potentiometric sensor integrated with an analog micromirror , 2014 .

[56]  M. Schöning,et al.  Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface , 2015 .

[57]  Hans Lueth,et al.  Semiconductor-based field-effect structures for chemical sensing , 2001, SPIE Optics East.

[58]  R. Kanzaki,et al.  Microscale pH gradient generation by electrolysis on a light-addressable planar electrode , 2010 .

[59]  Y. Vlasov,et al.  Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors—a critical review , 2003, Analytical and bioanalytical chemistry.

[60]  M. Schöning,et al.  Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk , 2017 .

[61]  Chunsheng Wu,et al.  Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer. , 2015, Nanoscale.

[62]  Chunsheng Wu,et al.  Label‐free electrical detection of DNA with a multi‐spot LAPS: First step towards light‐addressable DNA chips , 2014 .

[63]  Anirban Das,et al.  Sensing and pH-imaging properties of niobium oxide prepared by rapid thermal annealing for electrolyte–insulator–semiconductor structure and light-addressable potentiometric sensor , 2015 .

[64]  Axel Lorke,et al.  The field-effect-addressable potentiometric sensor/stimulator (FAPS)—a new concept for a surface potential sensor and stimulator with spatial resolution , 1999 .

[65]  R. Lin,et al.  GaN Thin Film Based Light Addressable Potentiometric Sensor for pH Sensing Application , 2013 .

[66]  Wolfgang J. Parak,et al.  A novel design of multi-light LAPS based on digital compensation of frequency domain , 2001 .

[67]  D. Cumming,et al.  High-resolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging , 2012 .

[68]  Michael J. Schöning,et al.  Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? , 2001 .

[69]  C. Rao,et al.  “LAPS Card”—A novel chip card-based light-addressable potentiometric sensor (LAPS) , 2006 .

[70]  Teruaki Katsube,et al.  Integrated taste sensor using surface photovoltage technique , 1994 .

[71]  P. Schmuki,et al.  High resolution LAPS and SPIM , 2010 .

[72]  W. Ko,et al.  A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor , 1986, IEEE Transactions on Electron Devices.

[73]  Chao‐Sung Lai,et al.  Light Addressable Potentiometric Sensor with Fluorine-Terminated Hafnium Oxide Layer for Sodium Detection , 2009 .

[74]  Makoto Ishida,et al.  Fabrication of a 128$\,\times\,$ 128 Pixels Charge Transfer Type Hydrogen Ion Image Sensor , 2013, IEEE Transactions on Electron Devices.

[75]  Michael J. Schöning,et al.  Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor , 2015 .

[76]  Hiroshi Iwasaki,et al.  Chemical-imaging sensor using enzyme , 1996 .

[77]  Hiroshi Iwasaki,et al.  Alternative sensor materials for light-addressable potentiometric sensors , 2001 .

[78]  I Gerhardt,et al.  Photocurrent measurements for laterally resolved interface characterization , 2000, Fresenius' journal of analytical chemistry.

[79]  Michael J. Schöning,et al.  Development of a handheld 16 channel pen-type LAPS for electrochemical sensing , 2005 .

[80]  Michael J. Schöning,et al.  Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications , 2007 .

[81]  Ming Xu,et al.  Scanning photo-induced impedance microscopy—an impedance based imaging technique , 2002 .

[82]  M. Schöning,et al.  Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor , 2016 .

[83]  Curtis C. Johnson,et al.  Hydrogen, Calcium, and Potassium Ion-Sensitive FET Transducers: A Preliminary Report , 1978, IEEE Transactions on Biomedical Engineering.

[84]  M. Klein,et al.  Characterization of ion-sensitive layer systems with a C( V) measurement method operating at constant capacitance , 1990 .

[85]  M. Schöning,et al.  Frequency behaviour of light‐addressable potentiometric sensors , 2013 .

[86]  S. Kanoh,et al.  Phase-mode LAPS and its application to chemical imaging , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[87]  I Lundström,et al.  Artificial 'olfactory' images from a chemical sensor using a light-pulse technique , 1991, Nature.

[88]  Ping Wang,et al.  Line-scanning LAPS array for measurement of heavy metal ions with micro-lens array based on MEMS , 2008 .

[89]  Claudio Nicolini,et al.  Computer simulation and optimization of a light addressable potentiometric sensor , 1992 .

[90]  J. W. Parce,et al.  The cytosensor microphysiometer: biological applications of silicon technology. , 1992, Science.

[91]  S. Martinoia,et al.  Comparison between a LAPS and an FET-based sensor for cell-metabolism detection , 1996 .

[92]  Claudio Nicolini,et al.  Minority carrier diffusion length effects on light-addressable potentiometric sensor (LAPS) devices , 1992 .

[93]  Yoshitaka Ito,et al.  High-spatial resolution LAPS , 1998 .

[94]  Karl Schügerl,et al.  Development and application of a new enzyme sensor type based on the EIS-capacitance structure for bioprocess control , 1994 .

[95]  A. Bratov,et al.  Recent trends in potentiometric sensor arrays--a review. , 2010, Analytica chimica acta.

[96]  I. Karube,et al.  BIOSENSORS BASED ON LIGHT-ADDRESSABLE POTENTIOMETRIC SENSORS FOR UREA, PENICILLIN AND GLUCOSE , 1998 .

[97]  J. Wang,et al.  Light-Addressable Potentiometric Sensor with Nitrogen-Incorporated Ceramic Sm2O3 Membrane for Chloride Ions Detection , 2015 .

[98]  D.M. Wilson,et al.  Sensor technologies for monitoring metabolic activity in single cells-part II: nonoptical methods and applications , 2004, IEEE Sensors Journal.

[99]  T. Yoshinobu,et al.  High-speed chemical imaging inside a microfluidic channel , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[100]  Y. Vlasov,et al.  The double K+/Ca2+ sensor based on laser scanned silicon transducer (LSST) for multi-component analysis. , 2003, Talanta.

[101]  Michael J. Schöning,et al.  Chapter 5 Light-addressable potentiometric sensors (LAPS): recent trends and applications , 2007 .

[102]  Hiroshi Iwasaki,et al.  Light-addressable potentiometric fluoride (F−) sensor , 2002 .

[103]  Michael J. Schöning,et al.  Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution , 2014 .

[104]  High-speed chemical imaging system based on front-side-illuminated LAPS , 2013 .

[105]  M. Schöning,et al.  Enhancement of the Spatial Resolution of the Chemical Imaging Sensor by a Hybrid Fiber-Optic Illumination , 2014 .

[106]  M. Schöning,et al.  Recent advances in biologically sensitive field-effect transistors (BioFETs). , 2002, The Analyst.

[107]  Izumi Kubo,et al.  Novel sensors for potassium, calcium and magnesium ions based on a silicon transducer as a light-addressable potentiometric sensor , 1999 .

[108]  Teruaki Katsube,et al.  High speed chemical image sensor with digital LAPS system , 1996 .

[109]  Michael J. Schöning,et al.  Image correction method for the chemical imaging sensor , 2010 .

[110]  Hiroshi Iwasaki,et al.  Scanning laser beam semiconductor pH imaging sensor , 1994 .

[111]  J. W. Parce,et al.  The light-addressable potentiometric sensor: principles and biological applications. , 1994, Annual review of biophysics and biomolecular structure.

[112]  W. Denk,et al.  Comparison of one- and two-photon optical beam-induced current imaging , 1999 .

[113]  J. Tagami,et al.  Surface analysis of dentinal caries in primary teeth using a pH-imaging microscope. , 2004, Dental materials journal.

[114]  Luca Selmi,et al.  A TCAD-Based Methodology to Model the Site-Binding Charge at ISFET/Electrolyte Interfaces , 2015, IEEE Transactions on Electron Devices.

[115]  Michael J. Schöning,et al.  Miniaturized chemical imaging sensor system using an OLED display panel , 2010 .

[116]  M George,et al.  Spatially resolved monitoring of cellular metabolic activity with a semiconductor-based biosensor. , 2003, Biosensors & bioelectronics.

[117]  Hiroshi Iwasaki,et al.  Anion-selective light-addressable potentiometric sensors (LAPS) for the determination of nitrate and sulphate ions , 2003 .

[118]  H. Iwasaki,et al.  Application of the chemical imaging sensor to electrophysiological measurement of a neural cell , 1999 .

[119]  D. R. S. Cumming,et al.  High-Speed Imaging of 2-D Ionic Diffusion Using a 16$\,\times\,$16 Pixel CMOS ISFET Array on the Microfluidic Scale , 2012, IEEE Sensors Journal.

[120]  S. E. Eklund,et al.  Multianalyte microphysiometry as a tool in metabolomics and systems biology , 2006 .

[121]  S. Martinoia,et al.  An array of H+ FETs for space-resolved electrochemical measurements in microenvironments , 1995 .

[122]  Wolfgang J. Parak,et al.  Can the light-addressable potentiometric sensor (LAPS) detect extracellular potentials of cardiac myocytes? , 2000, IEEE Transactions on Biomedical Engineering.

[123]  G. Sukhorukov,et al.  The effect of gold nanoparticles on the impedance of microcapsules visualized by scanning photo-induced impedance microscopy , 2016 .

[124]  Massimo Grattarola,et al.  Capacitive measurements in electrolyte-insulator-semiconductor (EIS) systems modified by biological materials , 1989 .

[125]  M. Schöning,et al.  Determination of the extracellular acidification of Escherichia coli by a light‐addressable potentiometric sensor , 2011 .

[126]  Michael J. Schöning,et al.  Bio FEDs (Field‐Effect Devices): State‐of‐the‐Art and New Directions , 2006 .

[127]  K. Wise,et al.  An Integrated Field-Effect Electrode for Biopotential Recording , 1974 .

[128]  T. Yoshinobu,et al.  "All-in-one" solid-state device based on a light-addressable potentiometric sensor platform , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[129]  Makoto Ishida,et al.  Label-Free Acetylcholine Image Sensor Based on Charge Transfer Technology for Biological Phenomenon Tracking , 2012 .

[130]  Hiroshi Iwasaki,et al.  Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications , 2000 .

[131]  Piet Bergveld,et al.  The influence of the pH on the electrolyte-SiO2-Si system studied by ion-sensitive fet measurements and quasi-static C-V measurements , 1980 .

[132]  Wolfgang J. Parak,et al.  Investigation of the spatial resolution of the light-addressable potentiometric sensor , 2000 .

[133]  Michael J. Schöning,et al.  High resolution LAPS using amorphous silicon as the semiconductor material , 2004 .

[134]  Michael J. Schöning,et al.  Label‐free electrical detection of DNA by means of field‐effect nanoplate capacitors: Experiments and modeling , 2012 .

[135]  Michael J. Schöning,et al.  Chemical image scanner based on FDM-LAPS , 2009 .

[136]  S. Kounaves,et al.  Microfabricated Ultramicroelectrode Arrays: Developments, Advances, and Applications in Environmental Analysis , 2000 .

[137]  L. Du,et al.  An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell , 2012, Biomedical Microdevices.

[138]  Olof Engström,et al.  Scanned light pulse technique for the investigation of insulator-semiconductor interfaces , 1983 .

[139]  M. Schöning,et al.  Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor , 2017 .