Prediction of angular distortion in the fiber laser keyhole welding process based on a variable-fidelity approximation modeling approach

[1]  R. J. Kuo,et al.  Combining SOM and evolutionary computation algorithms for RBF neural network training , 2019, J. Intell. Manuf..

[2]  Deyong You,et al.  Prediction of high power laser welding status based on PCA and SVM classification of multiple sensors , 2019, J. Intell. Manuf..

[3]  Xinyu Shao,et al.  Optimization of laser brazing onto galvanized steel based on ensemble of metamodels , 2018, J. Intell. Manuf..

[4]  Yan Wang,et al.  Robust optimization for reducing welding-induced angular distortion in fiber laser keyhole welding under process parameter uncertainty , 2018 .

[5]  Qi Zhou,et al.  Aggregate multiple radial basis function models for identifying promising process parameters in magnetic field assisted laser welding , 2017 .

[6]  Chao-Chao Wang,et al.  A multi-fidelity information fusion metamodeling assisted laser beam welding process parameter optimization approach , 2017, Adv. Eng. Softw..

[7]  Yu Huang,et al.  Numerical simulation and experiment analysis of angular distortion and residual stress in hybrid laser-magnetic welding , 2017 .

[8]  Changjun Liu,et al.  On a Simple and Efficient Approach to Probability Distribution Function Aggregation , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[9]  Xinyu Shao,et al.  A variable fidelity information fusion method based on radial basis function , 2017, Adv. Eng. Informatics.

[10]  Paulo Cezar Adamczuk,et al.  Methodology for predicting the angular distortion in multi-pass butt-joint welding , 2017 .

[11]  S. Saravanan,et al.  Pulsed Nd: YAG laser welding and subsequent post-weld heat treatment on super duplex stainless steel , 2017 .

[12]  Xinyu Shao,et al.  Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using Kriging model and GA , 2016 .

[13]  Xinyu Shao,et al.  Prediction of angular distortion in no gap butt joint using BPNN and inherent strain considering the actual bead geometry , 2016 .

[14]  Chao-Chao Wang,et al.  Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II , 2016, Adv. Eng. Softw..

[15]  S. Bhosle,et al.  Optimization of MIG Welding Parameters to Control the Angular Distortion in Fe410WA Steel , 2016 .

[16]  Xinyu Shao,et al.  Optimization of Process Parameters of Hybrid Laser–Arc Welding onto 316L Using Ensemble of Metamodels , 2016, Metallurgical and Materials Transactions B.

[17]  Jeong-Ung Park,et al.  Effect of welding sequence to minimize fillet welding distortion in a ship’s small component fabrication using joint rigidity method , 2016 .

[18]  Hui Zhou,et al.  An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling , 2016 .

[19]  X. Shao,et al.  Differing Mapping using Ensemble of Metamodels forGlobal Variable-fidelity Metamodeling , 2015 .

[20]  Sudipto Chaki,et al.  Application of integrated soft computing techniques for optimisation of hybrid CO2 laser-MIG welding process , 2015, Appl. Soft Comput..

[21]  Rubén Lostado-Lorza,et al.  Combining soft computing techniques and the finite element method to design and optimize complex welded products , 2015, Integr. Comput. Aided Eng..

[22]  Matteo Rossini,et al.  Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry , 2015 .

[23]  Keiichi Motoyama,et al.  Process parameter optimization of lap joint fillet weld based on FEM-RSM-GA integration technique , 2015, Adv. Eng. Softw..

[24]  Donghui Wang,et al.  A CAD/CAE integrated framework for structural design optimization using sequential approximation optimization , 2014, Adv. Eng. Softw..

[25]  Dilip Kumar Pratihar,et al.  Modelling of weld-bead geometry and hardness profile in laser welding of plain carbon steel using neural networks and genetic algorithms , 2014, Int. J. Comput. Integr. Manuf..

[26]  Masoud Rais-Rohani,et al.  Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures , 2014 .

[27]  Yang Wang,et al.  Prediction of transverse and angular distortions of gas tungsten arc bead-on-plate welding using artificial neural network , 2014 .

[28]  Paulraj Sathiya,et al.  Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm , 2012 .

[29]  Radovan Kovacevic,et al.  A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures , 2011, J. Intell. Manuf..

[30]  G. G. Wang,et al.  Metamodeling for High Dimensional Simulation-Based Design Problems , 2010 .

[31]  Sudipto Chaki,et al.  Estimation and optimization of depth of penetration in hybrid CO2 LASER-MIG welding using ANN-optimization hybrid model , 2010 .

[32]  Kamal Pal,et al.  Multisensor-based monitoring of weld deposition and plate distortion for various torch angles in pulsed MIG welding , 2010 .

[33]  A. Noorul Haq,et al.  Effect of shielding gases on mechanical and metallurgical properties of duplex stainless-steel welds , 2009 .

[34]  Wen-Jun Zhang,et al.  Thermal-error modeling for complex physical systems: the-state-of-arts review , 2009 .

[35]  A. G. Olabi,et al.  Optimization of different welding processes using statistical and numerical approaches - A reference guide , 2008, Adv. Eng. Softw..

[36]  V. Vel Murugan,et al.  Effects of process parameters on angular distortion of gas metal arc welded structural steel plates , 2005 .