A review of quantitative structure-activity relationship (QSAR) models

[1]  Paola Gramatica,et al.  3D‐modelling and Prediction by WHIM Descriptors. Part 6. Application of WHIM Descriptors in QSAR Studies , 1997 .

[2]  Peter C. Jurs,et al.  ADAPT: A Computer System for Automated Data Analysis Using Pattern Recognition Techniques , 1976, J. Chem. Inf. Comput. Sci..

[3]  A. Worth,et al.  ECVAM's Activities on Computer Modelling and Integrated Testing , 2002, Alternatives to laboratory animals : ATLA.

[4]  Weida Tong,et al.  Regulatory application of SAR/QSAR for priority setting of endocrine disruptors: A perspective , 2003 .

[5]  R. M. Muir,et al.  Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients , 1962, Nature.

[6]  P Mátyus,et al.  Application of neural networks in structure–activity relationships , 1999, Medicinal research reviews.

[7]  Arthur M. Doweyko,et al.  3D-QSAR illusions , 2004, J. Comput. Aided Mol. Des..

[8]  Gilman D. Veith,et al.  A QSAR Approach for Estimating the Aquatic Toxicity of Soft Electrophiles [QSAR for Soft Electrophiles] , 1993 .

[9]  Paola Gramatica,et al.  QSAR study on the tropospheric degradation of organic compounds , 1999 .

[10]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[11]  T. Brunton On the Connection between Chemical Constitution and Physiological Action , 1886, Nature.

[12]  P. Gramatica,et al.  Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors. , 2000, Chemosphere.

[13]  D. Manallack,et al.  Neural networks in drug discovery: Have they lived up to their promise? , 1999 .

[14]  L. Hammett The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives , 1937 .

[15]  Igor V. Tetko,et al.  Neural Network Modeling for Estimation of Partition Coefficient Based on Atom-Type Electrotopological State Indices , 2000, J. Chem. Inf. Comput. Sci..

[16]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[17]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[18]  David J. Livingstone,et al.  The Characterization of Chemical Structures Using Molecular Properties. A Survey , 2000, J. Chem. Inf. Comput. Sci..

[19]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[20]  Romualdo Benigni,et al.  Quantitative Structure-Activity Relationship (QSAR) Models of Mutagens and Carcinogens , 2003 .

[21]  Worth Andrew,et al.  Use of Quantitative Structrure-Activity Relationships in International Decision-Making Frameworks to Predict Ecologic Effects and Environmental Fate of Chemical Substances. , 2003 .

[22]  L. Eriksson Multi- and megavariate data analysis , 2006 .

[23]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .

[24]  C. Hansch,et al.  p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure , 1964 .

[25]  Sašo Džeroski,et al.  Applications of symbolic machine learning to ecological modelling , 2001 .

[26]  Dimitris K. Agrafiotis,et al.  A Novel Method for Building Regression Tree Models for QSAR Based on Artificial Ant Colony Systems , 2001, J. Chem. Inf. Comput. Sci..

[27]  Svante Wold,et al.  Multivariate quantitative structure-activity relationships (QSAR): conditions for their applicability , 1983, J. Chem. Inf. Comput. Sci..

[28]  Mark T. D. Cronin,et al.  Predicting Chemical Toxicity and Fate , 2004 .

[29]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[30]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[31]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[32]  Roy E. Welsch,et al.  Efficient Computing of Regression Diagnostics , 1981 .

[33]  Paola Gramatica,et al.  QSAR Modeling of Bioconcentration Factor by theoretical molecular descriptors , 2003 .

[34]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[35]  Richard A. Olshen,et al.  CART: Classification and Regression Trees , 1984 .

[36]  T. A. Andrea,et al.  Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors. , 1991, Journal of medicinal chemistry.

[37]  Douglas M. Hawkins,et al.  QSAR with Few Compounds and Many Features , 2001, J. Chem. Inf. Comput. Sci..

[38]  A. Beresford,et al.  The emerging importance of predictive ADME simulation in drug discovery. , 2002, Drug discovery today.

[39]  E Hulzebos,et al.  (Q)SARs for human toxicological endpoints: a literaturesearch , 1999 .

[40]  D. E. Nichols,et al.  Quantitative structure-activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods. , 1999, Journal of medicinal chemistry.

[41]  C Loehlin John,et al.  Latent variable models: an introduction to factor, path, and structural analysis , 1986 .

[42]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[43]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[44]  Romualdo Benigni,et al.  The Development and Validation of Expert Systems for Predicting Toxicity The Report and Recommendations of an ECVAM / ECB Workshop ( ECVAM Workshop 24 ) , 2002 .

[45]  David J. Livingstone,et al.  Data Analysis for Chemists: Applications to QSAR and Chemical Product Design , 1996 .

[46]  Hxugo Kubiny Variable Selection in QSAR Studies. I. An Evolutionary Algorithm , 1994 .

[47]  Alexander Tropsha,et al.  Novel Variable Selection Quantitative Structure-Property Relationship Approach Based on the k-Nearest-Neighbor Principle , 2000, J. Chem. Inf. Comput. Sci..

[48]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[49]  S. Weisberg Plots, transformations, and regression , 1985 .

[50]  Roberto Todeschini,et al.  A new algorithm for optimal, distance based, experimental design , 1992 .

[51]  M. Cronin,et al.  Pitfalls in QSAR , 2003 .

[52]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[53]  Chris L. Waller,et al.  Development and Validation of a Novel Variable Selection Technique with Application to Multidimensional Quantitative Structure-Activity Relationship Studies , 1999, J. Chem. Inf. Comput. Sci..

[54]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[55]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[56]  James Devillers,et al.  Neural Networks in QSAR and Drug Design , 1996 .

[57]  Martyn G. Ford,et al.  Unsupervised Forward Selection: A Method for Eliminating Redundant Variables , 2000, J. Chem. Inf. Comput. Sci..

[58]  Toshio Fujita,et al.  The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients , 1963 .

[59]  Maria Sandberg,et al.  Multivariate Design and Modelling in QSAR, Combinatorial Chemistry, and Bioinformatics , 2000 .

[60]  Wen‐Jun Zhang,et al.  Comparison of different methods for variable selection , 2001 .

[61]  Saso Dzeroski,et al.  EXPERIMENTS IN PREDICTING BIODEGRADABILITY , 1999, ILP.

[62]  Nina Nikolova-Jeliazkova,et al.  QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review , 2005, Alternatives to laboratory animals : ATLA.

[63]  J. Jaworska,et al.  Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints. , 2003, Environmental health perspectives.

[64]  C. Hansch,et al.  A NEW SUBSTITUENT CONSTANT, PI, DERIVED FROM PARTITION COEFFICIENTS , 1964 .

[65]  Paola Gramatica,et al.  Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. , 2003, Environmental health perspectives.

[66]  Paola Gramatica,et al.  3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs) , 1998 .

[67]  M. Cronin,et al.  Computational methods for the prediction of drug toxicity. , 2000, Current opinion in drug discovery & development.

[68]  Mark T D Cronin,et al.  Essential and desirable characteristics of ecotoxicity quantitative structure–activity relationships , 2003, Environmental toxicology and chemistry.

[69]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[70]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[71]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[72]  A. C. Brown,et al.  V.—On the Connection between Chemical Constitution and Physiological Action. Part. I.—On the Physiological Action of the Salts of the Ammonium Bases, derived from Strychnia, Brucia, Thebaia, Codeia, Morphia, and Nicotia , 1870, Transactions of the Royal Society of Edinburgh.

[73]  Gérard Dreyfus,et al.  Toward a Principled Methodology for Neural Network Design and Performance Evaluation in QSAR. Application to the Prediction of LogP , 1998, J. Chem. Inf. Comput. Sci..

[74]  Weida Tong,et al.  Assessment of Prediction Confidence and Domain Extrapolation of Two Structure–Activity Relationship Models for Predicting Estrogen Receptor Binding Activity , 2004, Environmental health perspectives.

[75]  Andrew P Worth,et al.  Report of the Workshop on the Validation of QSARs and Other Computational Prediction Models , 2004, Alternatives to laboratory animals : ATLA.

[76]  Andrew Worth,et al.  REVIEW OF METHODS FOR ASSESSING THE APPLICABILTY , 2004 .

[77]  Tudor I. Oprea,et al.  Chemoinformatics in drug discovery , 2005 .

[78]  John D. Walker,et al.  Quantitative structure‐activity relationships for predicting percutaneous absorption rates , 2003, Environmental toxicology and chemistry.

[79]  G. Cruciani,et al.  Generating Optimal Linear PLS Estimations (GOLPE): An Advanced Chemometric Tool for Handling 3D‐QSAR Problems , 1993 .

[80]  Mark T D Cronin,et al.  The Current Status and Future Applicability of Quantitative Structure–activity Relationships (QSARs) in Predicting Toxicity , 2002, Alternatives to laboratory animals : ATLA.

[81]  G. Tutz Smoothed categorical regression based on direct kernel estimates , 1990 .

[82]  Hugo Kubinyi,et al.  Evolutionary variable selection in regression and PLS analyses , 1996 .

[83]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[84]  S Ram,et al.  Quantitative structure-activity relationships. , 1979, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[85]  Erik Johansson,et al.  QSAR Model Validation , 2000 .

[86]  M. S. Khots,et al.  D-optimal designs , 1995 .

[87]  John D. Walker,et al.  Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. , 2003, Environmental health perspectives.

[88]  Paul S. Charifson,et al.  Practical Application of Computer-Aided Drug Design , 1997 .

[89]  Paola Gramatica,et al.  The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models , 2003 .

[90]  Robert W. Taft,et al.  Polar and Steric Substituent Constants for Aliphatic and o-Benzoate Groups from Rates of Esterification and Hydrolysis of Esters1 , 1952 .

[91]  R. H. Myers Classical and modern regression with applications , 1986 .

[92]  John D. Walker,et al.  Quantitative structure–activity relationships (QSARs) in toxicology: a historical perspective , 2003 .