On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments

Abstract Over the past several decades, a noticeable amount of research efforts has been directed to minimising injuries and death to people inside a structure that is subjected to an impact loading. Thin-walled (TW) tubular components have been widely employed in energy absorbing structures to alleviate the detrimental effects of an impact loading during a collision event and thus enhance the crashworthiness performance of a structure. Comprehensive knowledge of the material properties and the structural behaviour of various TW components under various loading conditions is essential for designing an effective energy absorbing system. In this paper, based on a broad survey of the literature, a comprehensive overview of the recent developments in the area of crashworthiness performance of TW tubes is given with a special focus on the topics that emerged in the last ten years such as crashworthiness optimisation design and energy absorbing responses of unconventional TW components including multi-cells tubes, functionally graded thickness tubes and functionally graded foam filled tubes. Due to the huge number of studies that analysed and assessed the energy absorption behaviour of various TW components, this paper presents only a review of the crashworthiness behaviour of the components that can be used in vehicles structures including hollow and foam-filled TW tubes under lateral, axial, oblique and bending loading.

[1]  F. Rammerstorfer,et al.  Crushing of axially compressed steel tubes filled with aluminium foam , 1997 .

[2]  L. Romera,et al.  Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices , 2014 .

[3]  G. Lu,et al.  Quasi-static axial compression of thin-walled circular aluminium tubes , 2001 .

[4]  Ping Xu,et al.  Crash performance and multi-objective optimization of a gradual energy-absorbing structure for subway vehicles , 2016 .

[5]  Stephen R Reid,et al.  Lateral compression of tubes and tube-systems with side constraints , 1979 .

[6]  T. Wierzbicki,et al.  On the Crushing Mechanics of Thin-Walled Structures , 1983 .

[7]  Guangyao Li,et al.  Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models , 2013 .

[8]  Tongxi Yu,et al.  Collision and rebounding of circular rings on rigid target , 2015 .

[9]  Yunkai Gao,et al.  Multiobjective reliability-based optimization for design of a vehicledoor , 2013 .

[10]  Michael D. Gilchrist,et al.  Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading , 2016 .

[11]  A. Hamouda,et al.  Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces , 2013 .

[12]  Abbas Niknejad,et al.  Theoretical and experimental studies of the external inversion process in the circular metal tubes , 2012 .

[13]  C. L. Magee,et al.  The Interplay of Geometric and Materials Variables in Energy Absorption , 1977 .

[14]  Kum Cheol Shin,et al.  Axial crush and bending collapse of an aluminum/GFRP hybrid square tube and its energy absorption capability , 2001 .

[15]  G. Cheng,et al.  A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns , 2007 .

[16]  H. Lankarani,et al.  Energy Absorption Characteristics of a Thin-Walled Tube Filled With Carbon Nano Polyurethane Foam and Application in Car Bumper , 2014 .

[17]  Filipe Teixeira-Dias,et al.  New composite liners for energy absorption purposes , 2013 .

[18]  Tongxi Yu,et al.  AXIAL CRUSHING OF TRIANGULAR TUBES , 2013 .

[19]  W. Abramowicz,et al.  Stress profiles in thin-walled prismatic columns subjected to crush loading II. Compression , 1994 .

[20]  Michael D. Gilchrist,et al.  Propagation of a stress wave through a virtual functionally graded foam , 2009 .

[21]  Milad Abbasi,et al.  Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members , 2015 .

[22]  S. Reid,et al.  Axial splitting of circular metal tubes , 1986 .

[23]  Mustafa Güden,et al.  The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes , 2005 .

[24]  Qing Li,et al.  Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness , 2014 .

[25]  Qing Li,et al.  Multiobjective optimization for crash safety design of vehicles using stepwise regression model , 2008 .

[26]  N. Fleck,et al.  High strain rate compressive behaviour of aluminium alloy foams , 2000 .

[27]  Santiago Hernández,et al.  Static and dynamic axial crushing analysis of car frontal impact hybrid absorbers , 2013 .

[28]  Reza Kazemi,et al.  Using a Parametric Method for Investigating Automotive Crashworthiness , 2011 .

[29]  Xu Han,et al.  Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes , 2014 .

[30]  G. Nurick,et al.  The Energy-Absorbing Characteristics of Tubular Structures With Geometric and Material Modifications: An Overview , 2008 .

[31]  Javad Marzbanrad,et al.  Multi-Objective Optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks , 2011 .

[32]  A. Hamouda,et al.  Axial crushing behavior and energy absorption efficiency of corrugated tubes , 2014 .

[33]  Milad Abbasi,et al.  A new approach for optimizing automotive crashworthiness: concurrent usage of ANFIS and Taguchi method , 2014 .

[34]  O. Hopperstad,et al.  Square aluminum tubes subjected to oblique loading , 2003 .

[35]  Qing Li,et al.  A Comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure , 2013 .

[36]  Abdulmalik A. Alghamdi,et al.  Collapsible impact energy absorbers: an overview , 2001 .

[37]  Tongxi Yu,et al.  On the axial splitting and curling of circular metal tubes , 2002 .

[38]  S. Reid,et al.  Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section , 1986 .

[39]  S. K. Gupta,et al.  Effect of annealing, size and cut-outs on axial collapse behaviour of circular tubes , 1993 .

[40]  G. S. Sekhon,et al.  Study of lateral compression of round metallic tubes , 2005 .

[41]  G. Cheng,et al.  Theoretical prediction and numerical simulation of multi-cell square thin-walled structures , 2006 .

[42]  Mahmoud Shakeri,et al.  New insights into the collapsing of cylindrical thin-walled tubes under axial impact load , 2007 .

[43]  Hua Liu,et al.  Internally nested circular tube system subjected to lateral impact loading , 2015 .

[44]  David P. Thambiratnam,et al.  Dynamic simulation and energy absorption of tapered tubes under impact loading , 2004 .

[45]  Stephen R Reid,et al.  Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations , 2005 .

[46]  David P. Thambiratnam,et al.  A numerical study on the impact response and energy absorption of tapered thin-walled tubes , 2004 .

[47]  Qing Li,et al.  A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading , 2015 .

[48]  عبدالملك الجنيدي Folding crumpling of thin walled aluminium frusta , 2002 .

[49]  David P. Thambiratnam,et al.  Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading , 2010 .

[50]  Athanasios G. Mamalis,et al.  Crashworthy capability of composite material structures , 1997 .

[51]  Magnus Langseth,et al.  Stress–strain behaviour of aluminium alloys at a wide range of strain rates , 2009 .

[52]  Qing Li,et al.  Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria , 2007 .

[53]  Sadjad Pirmohammad,et al.  Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads , 2016 .

[54]  Ezio Cadoni,et al.  Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars , 2012 .

[55]  Guilin Wen,et al.  Crushing analysis and multi-objective optimization design for bionic thin-walled structure , 2015 .

[56]  WJ Willem Witteman,et al.  Improved vehicle crashworthiness design by control of the energy absorption for different collision situations , 1999 .

[57]  H. Zarei,et al.  Optimum honeycomb filled crash absorber design , 2008 .

[58]  Xiaodong Huang,et al.  Dynamical bending analysis and optimization design for functionally graded thickness (FGT) tube , 2015 .

[59]  Riadh Al-Mahaidi,et al.  Stub column tests of fabricated square and triangular sections utilizing very high strength steel tubes , 2004 .

[60]  Guilin Wen,et al.  Crashworthiness optimization design for foam-filled multi-cell thin-walled structures , 2014 .

[61]  Philippe Viot,et al.  Polypropylene foam behaviour under dynamic loadings : Strain rate, density and microstructure effects , 2009 .

[62]  Simon Ouellet,et al.  Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions , 2006 .

[63]  Stephen R Reid,et al.  Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models , 2005 .

[64]  Stephen R Reid,et al.  Energy absorbing capacities of braced metal tubes , 1983 .

[65]  Rafea Dakhil Hussein,et al.  Crushing response of square aluminium tubes filled with polyurethane foam and aluminium honeycomb , 2017 .

[66]  Masoud Rais-Rohani,et al.  Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes , 2011 .

[67]  Qing Li,et al.  On design of multi-cell thin-wall structures for crashworthiness , 2016 .

[68]  G. Wen,et al.  Multiobjective crashworthiness optimization design of functionally graded foam-filled tapered tube based on dynamic ensemble metamodel , 2014 .

[69]  Ahmad Baroutaji,et al.  Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading , 2014 .

[70]  Mohammad Hassan Shojaeefard,et al.  Theoretical development and numerical investigation on energy absorption behavior of tapered multi-cell tubes , 2016 .

[71]  W. Altenhof,et al.  An experimental investigation into the cutting deformation mode of AA6061-T6 round extrusions , 2006 .

[72]  W. Abramowicz,et al.  Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically , 1997 .

[73]  T. W. Clyne,et al.  The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams , 2001 .

[74]  Tomasz Wierzbicki,et al.  Crash behavior of box columns filled with aluminum honeycomb or foam , 1998 .

[75]  Tomasz Wierzbicki,et al.  Indentation of tubes under combined loading , 1988 .

[76]  Kiran Solanki,et al.  Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach , 2012 .

[77]  Hualin Fan,et al.  Lateral compression behaviors of thin-walled equilateral triangular tubes , 2015 .

[78]  TrongNhan Tran Crushing and theoretical analysis of multi-cell thin-walled triangular tubes under lateral loading , 2017 .

[79]  David Morin,et al.  Axial crushing of aluminum extrusions filled with PET foam and GFRP. An experimental investigation , 2016 .

[80]  Tomasz Wierzbicki,et al.  Effect of an ultralight metal filler on the bending collapse behavior of thin-walled prismatic columns , 1999 .

[81]  Hualin Fan,et al.  Quasi-static crushing behaviors and plastic analysis of thin-walled triangular tubes , 2015 .

[82]  Qing Li,et al.  Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact , 2014 .

[83]  Magnus Langseth,et al.  Transition Between Progressive And Global Buckling Of Aluminium Extrusions , 2002 .

[84]  A. G. Olabia,et al.  Optimised design of nested circular tube energy absorbers under lateral impact loading , 2016 .

[85]  Stephen R Reid,et al.  LATERALLY COMPRESSED METAL TUBES AS IMPACT ENERGY ABSORBERS. , 1983 .

[86]  Saeed Ziaei-Rad,et al.  Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings , 2008 .

[87]  Yu Zhang,et al.  Metamodeling development for reliability-based design optimization of automotive body structure , 2011, Comput. Ind..

[88]  Tore Børvik,et al.  Experimental and numerical study on the perforation of AA6005-T6 panels , 2005 .

[89]  T. N. Tran,et al.  Lateral crushing behaviour and theoretical prediction of thin-walled rectangular and square tubes , 2016 .

[90]  Wei Li,et al.  Multiobjective optimization of multi-cell sections for the crashworthiness design , 2008 .

[91]  A. G. Olabia,et al.  Optimised Design of Nested Oblong Tube Energy Absorbers under Lateral Impact Loading , 2009 .

[92]  J. Bi,et al.  A constitutive model of aluminum foam for crash simulations , 2017 .

[93]  Hongwei Song,et al.  Partition Energy Absorption of Axially Crushed Aluminum Foam-Filled Hat Sections , 2005 .

[94]  Stephen R Reid,et al.  Phenomena associated with the crushing of metal tubes between rigid plates , 1980 .

[95]  Jianguang Fang,et al.  Parameterization of criss-cross configurations for multiobjective crashworthiness optimization , 2017 .

[96]  Akhtar S. Khan,et al.  A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures , 1999 .

[97]  Guangyong Sun,et al.  Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles , 2017 .

[98]  John F. Carney,et al.  Experimental analyses of collapse behaviors of braced elliptical tubes under lateral compression , 1998 .

[99]  James Lankford,et al.  High strain rate compression of closed-cell aluminium foams , 2000 .

[100]  Marcílio Alves,et al.  Transition from progressive buckling to global bending of circular shells under axial impact––Part I: Experimental and numerical observations , 2004 .

[101]  Xiong Zhang,et al.  Bending resistance of thin-walled multi-cell square tubes , 2016 .

[102]  Abbas Niknejad,et al.  A novel nested system of tubes with special cross-section as the energy absorber , 2016 .

[103]  Milad Abbasi,et al.  Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection , 2015 .

[104]  Shu Yang,et al.  Multiobjective optimization for empty and foam-filled square columns under oblique impact loading , 2013 .

[105]  T. Wierzbicki,et al.  Axial Crushing of Multicorner Sheet Metal Columns , 1989 .

[106]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .

[107]  Experimental and Numerical Studies of Fiber Metal Laminate (FML) Thin-Walled Tubes Under Impact Loading , 2015 .

[108]  Kamran Behdinan,et al.  Numerical simulation of the axial collapse of thin-walled polygonal section tubes , 2005 .

[109]  Masoud Rais-Rohani,et al.  A comparative study of metamodeling methods for multiobjective crashworthiness optimization , 2005 .

[110]  Matej Vesenjak,et al.  Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam , 2014 .

[111]  Ahmad Baroutaji,et al.  Energy absorption through the lateral collapse of thin-walled single and nested tubes , 2014 .

[112]  David P. Thambiratnam,et al.  Application of foam-filled conical tubes in enhancing the crashworthiness performance of vehicle protective structures , 2009 .

[113]  G. Venizelos,et al.  High strain rate properties of selected aluminium alloys , 2000 .

[114]  TrongNhan Tran Crushing analysis under multiple impact loading cases for multi-cell triangular tubes , 2017 .

[115]  Jianguang Fang,et al.  Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets , 2015 .

[116]  Hui Zhang,et al.  Crashworthiness performance of conical tubes with nonlinear thickness distribution , 2016 .

[117]  Magnus Langseth,et al.  Modeling of textured aluminum alloys used in a bumper system: Material tests and characterization , 2006 .

[118]  O. Hopperstad,et al.  Optimum design for energy absorption of square aluminium columns with aluminium foam filler , 2001 .

[119]  Jian Li,et al.  Crushing analysis and multi-objective optimization of a railway vehicle driver's cab , 2016 .

[120]  E. El-Magd,et al.  Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading , 2006 .

[121]  Xiaolin Deng,et al.  Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact , 2016 .

[122]  S.T.S. Al-Hassani,et al.  Axial crushing of wood-filled square metal tubes , 1993 .

[123]  Wenyi Yan,et al.  Crushing simulation of foam-filled aluminium tubes , 2007 .

[124]  Norman Jones,et al.  Dynamic progressive buckling of circular and square tubes , 1986 .

[125]  G. L. Viegelahn,et al.  Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders , 1991 .

[126]  Xiong Zhang,et al.  Bending collapse of square tubes with variable thickness , 2016 .

[127]  Vikram Deshpande,et al.  The high strain rate response of PVC foams and end-grain balsa wood , 2008 .

[128]  Manabu Gotoh,et al.  Axial crush of hollow cylindrical structures with various polygonal cross-sections , 2003 .

[129]  P. H. Thornton ENERGY ABSORPTION BY FOAM FILLED STRUCTURES , 1980 .

[130]  Hongwei Song,et al.  Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes , 2000 .

[131]  Abdulmalik A. Alghamdi,et al.  Modes of axial collapse of unconstrained capped frusta , 2002 .

[132]  Wei Li,et al.  Crashworthiness design for foam filled thin-wall structures , 2009 .

[133]  Zhiliang Tang,et al.  Energy absorption properties of non-convex multi-corner thin-walled columns , 2012 .

[134]  Shujuan Hou,et al.  Crushing analysis and numerical optimization of angle element structures under axial impact loading , 2015 .

[135]  Stephen R Reid,et al.  Dynamic uniaxial crushing of wood , 1997 .

[136]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[137]  Marcílio Alves,et al.  Transition from progressive buckling to global bending of circular shells under axial impact--Part II: Theoretical analysis , 2004 .

[138]  Norman Jones,et al.  Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes , 2004 .

[139]  O. Hopperstad,et al.  Static and dynamic crushing of square aluminium extrusions with aluminium foam filler , 2000 .

[140]  Hui Zhang,et al.  Energy absorption of multi-cell stub columns under axial compression , 2013 .

[141]  O. Hopperstad,et al.  Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study , 2004 .

[142]  Seeram Ramakrishna,et al.  Energy Absorption Characteristics of Crash Worthy Structural Composite Materials , 1997 .

[143]  Baojin Wang,et al.  Optimum design for energy absorption of bitubal hexagonal columns with honeycomb core , 2008 .

[144]  Zhijun Zheng,et al.  Crashworthiness of foam-filled thin-walled circular tubes under dynamic bending , 2013 .

[145]  D. Thambiratnam,et al.  Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading , 2006 .

[146]  Qiang Gao,et al.  Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading , 2016 .

[147]  Michael D. Gilchrist,et al.  Analysis and optimization of sandwich tubes energy absorbers under lateral loading , 2015 .

[148]  Athanasios G. Mamalis,et al.  Extensible plastic collapse of thin-wall frusta as energy absorbers , 1986 .

[149]  W. Abramowicz,et al.  Alexander revisited—A two folding elements model of progressive crushing of tubes , 1992 .

[150]  David P. Thambiratnam,et al.  Computer simulation and energy absorption of tapered thin-walled rectangular tubes , 2005 .

[151]  H. A. Al-Qureshi,et al.  Mechanics of static and dynamic inversion processes , 1997 .

[152]  Xu Han,et al.  Multivariable crashworthiness optimization of vehicle body by unreplicated saturated factorial design , 2012 .

[153]  R. G. Redwood,et al.  Discussion: “Crushing of a Tube Between Rigid Plates” (DeRuntz, Jr., John A., and Hodge, Jr., P. G., 1963, ASME J. Appl. Mech., 30, pp. 391–395) , 1964 .

[154]  N. Gupta,et al.  Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness , 2006 .

[155]  H. R. Zarei,et al.  Optimization of the foam-filled aluminum tubes for crush box application , 2008 .

[156]  N. Gupta A functionally graded syntactic foam material for high energy absorption under compression , 2007 .

[157]  W. Johnson,et al.  Long stroke energy dissipation in splitting tubes , 1983 .

[158]  Xiong Zhang,et al.  Axial crushing and optimal design of square tubes with graded thickness , 2014 .

[159]  Dimitrios E. Manolakos,et al.  Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section , 2003 .

[160]  G. S. Sekhon,et al.  A study of lateral collapse of square and rectangular metallic tubes , 2001 .

[161]  Zonghua Zhang,et al.  Analysis of energy absorption characteristics of cylindrical multi-cell columns , 2013 .

[162]  Michael D. Gilchrist,et al.  Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading , 2015 .

[163]  T. Wierzbicki,et al.  Experimental and numerical studies of foam-filled sections , 2000 .

[164]  Tomasz Wierzbicki,et al.  Axial resistance and energy absorption of externally reinforced metal tubes , 1996 .

[165]  O. Hopperstad,et al.  Validation of constitutive models applicable to aluminium foams , 2002 .

[166]  C. Thinvongpituk,et al.  The Influence of Foam Density on Specific Energy Absorption of Rectangular Steel Tubes , 2010 .

[167]  A. A. Singace Axial crushing analysis of tubes deforming in the multi-lobe mode , 1999 .

[168]  G. Wen,et al.  Multiobjective crashworthiness optimization of functionally lateral graded foam-filled tubes , 2013 .

[169]  H. Kavi,et al.  Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient , 2006 .

[170]  Shujuan Hou,et al.  Crashworthiness design of functionally graded foam-filled multi-cell thin-walled structures , 2014 .

[171]  Odd Sture Hopperstad,et al.  Design of aluminium foam-filled crash boxes of square and circular cross-sections , 2001 .

[172]  W. Abramowicz,et al.  STATIC AND DYNAMIC AXIAL CRUSHING OF CIRCULAR AND SQUARE TUBES , 1985 .

[173]  Jianguang Fang,et al.  On design of multi-cell tubes under axial and oblique impact loads , 2015 .

[174]  Guangyao Li,et al.  Multiobjective optimization design for vehicle occupant restraint system under frontal impact , 2013 .

[175]  Heung-Soo Kim,et al.  New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency , 2002 .

[176]  Xu Han,et al.  Factor screening and multivariable crashworthiness optimization for vehicle side impact by factorial design , 2014 .

[177]  Fangyun Lu,et al.  High-strain-rate compressive behavior of a rigid polyurethane foam with various densities , 2002 .

[178]  Norman A. Fleck,et al.  Effect of imperfections on the yielding of two-dimensional foams , 1999 .

[179]  David P. Thambiratnam,et al.  Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading , 2009 .

[180]  M. Attia,et al.  Nonlinear finite element analysis of the crush behaviour of functionally graded foam-filled columns , 2012 .

[181]  Abdul-Ghani Olabi,et al.  Analysis of the Effect of the Elliptical Ratio in Tubular Energy Absorbers Under Quasi-Static Conditions , 2012 .

[182]  Guoxing Lu,et al.  Investigation of lateral crushing of sandwich tubes , 2011 .

[183]  Feng Yi,et al.  Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams , 2001 .

[184]  John F. Carney,et al.  Initial collapse of braced elliptical tubes under lateral compression , 1997 .

[185]  Ping Zhu,et al.  Design optimisation of vehicle roof structures: benefits of using multiple surrogates , 2011 .

[186]  Guoxing Lu,et al.  Dynamic lateral crushing of empty and sandwich tubes , 2013 .

[187]  F. Rammerstorfer,et al.  Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam , 2000 .

[188]  G. Solomos,et al.  Empty and foam-filled circular aluminium tubes subjected to axial and oblique quasistatic loading , 2003 .

[189]  David C. Dunand,et al.  Mechanical properties of a density-graded replicated aluminum foam , 2008 .

[190]  Qing Li,et al.  Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel , 2014 .

[191]  Z. Ahmad,et al.  Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading , 2015 .

[192]  S. Hernández,et al.  A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber , 2014 .

[193]  E. Acar,et al.  Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations , 2011 .

[194]  A. Asanjarani,et al.  Multi-objective crashworthiness optimization of tapered thin-walled square tubes with indentations , 2017 .

[195]  Shiwei Zhou,et al.  Crashworthiness design for functionally graded foam-filled thin-walled structures , 2010 .

[196]  A. Abdul-Latif,et al.  New generation of energy dissipating systems based on biaxial buckling , 2014 .

[197]  D. J. Green,et al.  The effect of cell size on the mechanical behavior of cellular materials , 1990 .

[198]  Michael R. Bambach,et al.  Plastic mechanism analysis of steel SHS strengthened with CFRP under large axial deformation , 2007 .

[199]  W. Abramowicz,et al.  Dynamic axial crushing of square tubes , 1984 .

[200]  Qing Li,et al.  Optimization of foam-filled bitubal structures for crashworthiness criteria , 2012 .

[201]  J. Marsolek,et al.  Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns , 2004 .

[202]  Michael D. Gilchrist,et al.  Designing the energy absorption capacity of functionally graded foam materials , 2009 .

[203]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[204]  Qing Li,et al.  Design of transversely-graded foam and wall thickness structures for crashworthiness criteria , 2016 .

[205]  Stephen R Reid,et al.  Effect of strain hardening on the lateral compression of tubes between rigid plates , 1978 .

[206]  Chiara Bisagni,et al.  Crashworthiness of helicopter subfloor structures , 2002 .

[207]  Mehdi Tajdari,et al.  Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading , 2010 .

[208]  S. Stock,et al.  Uniform and graded chemical milling of aluminum foams , 2007 .

[209]  Stephen R Reid,et al.  Axial crushing of foam-filled tapered sheet metal tubes , 1986 .

[210]  Tongxi Yu,et al.  Analysis of the free external inversion of circular tubes based on deformation theory , 2015 .

[211]  Jie Song,et al.  Light-weight thin-walled structures with patterned windows under axial crushing , 2013 .

[212]  M. Finn,et al.  High strain rate tensile testing of automotive aluminum alloy sheet , 2005 .

[213]  Jie Gu,et al.  A three-dimensional model of circular tube under quasi-static external free inversion , 2013 .

[214]  Philip G. Hodge,et al.  Crushing of a Tube Between Rigid Plates , 1963 .

[215]  Qing Li,et al.  Multiobjective crashworthiness optimization of hollow and conical tubes for multiple load cases , 2014 .

[216]  Han Zhao,et al.  An experimental study on the behaviour under impact loading of metallic cellular materials , 2005 .

[217]  David C. Barton,et al.  The Response of Square Cross-Section Tubes Under Lateral Impact Loading , 1998 .

[218]  J. Carruthers,et al.  Energy Absorption Capability and Crashworthiness of Composite Material Structures: A Review , 1998 .

[219]  S. Li,et al.  On design of graded honeycomb filler and tubal wall thickness for multiple load cases , 2016 .

[220]  J. M. Alexander AN APPROXIMATE ANALYSIS OF THE COLLAPSE OF THIN CYLINDRICAL SHELLS UNDER AXIAL LOADING , 1960 .

[221]  Abdul-Ghani Olabi,et al.  Analysis of nested tube type energy absorbers with different indenters and exterior constraints , 2006 .

[222]  Qing Li,et al.  On functionally graded composite structures for crashworthiness , 2015 .

[223]  Abdul-Ghani Olabi,et al.  Lateral crushing of circular and non-circular tube systems under quasi-static conditions , 2007 .

[224]  S. Reid,et al.  Static and dynamic axial crushing of foam-filled sheet metal tubes , 1986 .

[225]  Yunkai Gao,et al.  Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases , 2015 .

[226]  Qing Li,et al.  Crashworthiness analysis and optimization of sinusoidal corrugation tube , 2016 .

[227]  Abbas Niknejad,et al.  Experimental and theoretical study of the lateral compression process on the empty and foam-filled hexagonal columns , 2014 .

[228]  Xiaodong Huang,et al.  Comparison of functionally-graded structures under multiple loading angles , 2015 .

[229]  Nik Petrinic,et al.  Axial crushing of metal foam-filled square columns: Foam density distribution and impactor inclination effects , 2005 .

[230]  Yufeng Deng,et al.  Multiobjective optimization for foam-filled multi-cell thin-walled structures under lateral impact , 2015 .

[231]  M. Kröger,et al.  Bending behavior of empty and foam-filled beams: Structural optimization , 2008 .

[232]  Tongxi Yu,et al.  Energy Absorption of Structures and Materials , 2003 .

[233]  Abdul-Ghani Olabi,et al.  Lateral collapse of short-length sandwich tubes compressed by different indenters and exposed to external constraints , 2014 .

[234]  J. Cirne,et al.  Dynamic axial crushing of short to long circular aluminium tubes with agglomerate cork filler , 2007 .

[235]  Ren-Jye Yang,et al.  Adaptive sampling-based RBDO method for vehicle crashworthiness design using Bayesian metric and stochastic sensitivity analysis with independent random variables , 2013 .

[236]  Jianguang Fang,et al.  On design optimization for structural crashworthiness and its state of the art , 2017 .

[237]  O. Hopperstad,et al.  Modeling of material failure in foam-based components , 2004 .

[238]  Xu Han,et al.  Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading , 2014 .

[239]  A. Alavi Nia,et al.  An investigation on the energy absorption characteristics of multi-cell square tubes , 2013 .

[240]  W. Abramowicz,et al.  Thin-walled structures as impact energy absorbers , 2003 .

[241]  Guoxing Lu,et al.  Lateral plastic collapse of sandwich tubes with metal foam core , 2015 .

[242]  Bertan Bayram,et al.  The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading , 2010 .

[243]  Abdul-Ghani Olabi,et al.  Metallic tube type energy absorbers: A synopsis , 2007 .

[244]  Stephen R Reid,et al.  Transient effects in the quasi-static and dynamic internal inversion and nosing of metal tubes , 1998 .

[245]  Jianguang Fang,et al.  Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness , 2015 .

[246]  Tongxi Yu,et al.  Energy absorption in splitting square metal tubes , 2002 .

[247]  A. A. Nia,et al.  Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections , 2014 .

[248]  Qing Li,et al.  Crashworthiness design for functionally graded foam-filled bumper beam , 2015, Adv. Eng. Softw..

[249]  K. Hertz Structural impact , 2019, Design of Fire-resistant Concrete Structures.

[250]  H. R. Zarei,et al.  Multiobjective crashworthiness optimization of circular aluminum tubes , 2006 .

[251]  Yucheng Liu,et al.  Optimum design of straight thin-walled box section beams for crashworthiness analysis , 2008 .

[252]  Jianguang Fang,et al.  Crashworthiness design of foam-filled bitubal structures with uncertainty , 2014 .

[253]  Shu Yang,et al.  Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading , 2012 .

[254]  Shutian Liu,et al.  Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam , 2009 .

[255]  Stefan Tabacu,et al.  Axial crushing of circular structures with rectangular multi-cell insert , 2015 .

[256]  Abdulmalik A. Alghamdi,et al.  Reinversion of aluminium frustra , 2002 .

[257]  Xiong Zhang,et al.  Axial crushing of circular multi-cell columns , 2014 .

[258]  Guoxing Lu,et al.  A study of the crushing of tubes by two indenters , 1993 .

[259]  Massimiliano Avalle,et al.  Static lateral compression of aluminium tubes: Strain gauge measurements and discussion of theoretical models , 1997 .

[260]  G. Wen,et al.  Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes , 2011 .

[261]  D. Slater,et al.  Effect of tube length on the bucking mode and energy absorption of Al foam-filled tubes , 2004 .

[262]  S. Reid PLASTIC DEFORMATION MECHANISMS IN AXIALLY COMPRESSED METAL TUBES USED AS IMPACT ENERGY ABSORBERS , 1993 .

[263]  Stelios Kyriakides,et al.  On the effect of relative density on the crushing and energy absorption of open-cell foams under impact , 2015 .

[264]  A. G Mamalis,et al.  The quasi-static crumpling of thin-walled circular cylinders and frusta under axial compression , 1983 .

[265]  B. Kiebacka,et al.  Processing techniques for functionally graded materials , 2003 .

[266]  E. Acar,et al.  Optimum crashworthiness design of tapered thin-walled tubes with lateral circular cutouts , 2016 .

[267]  David P. Thambiratnam,et al.  Crushing response of foam-filled conical tubes under quasi-static axial loading , 2009 .

[268]  M. B. Ioannidis,et al.  Crashworthiness of Composite Thin-Walled Structures , 1998 .

[269]  Bin Wang,et al.  Mushrooming of circular tubes under dynamic axial loading , 2002 .

[270]  Kozo Kawata,et al.  Carbon content effect on high-strain-rate tensile properties for carbon steels , 2000 .

[271]  Qiang Gao,et al.  Optimization of foam-filled double ellipse tubes under multiple loading cases , 2016, Adv. Eng. Softw..

[272]  P. Jiang,et al.  Size effects in the axial tearing of circular tubes during quasi-static and impact loadings , 2006 .

[273]  Yucheng Liu,et al.  Simplified modelling of thin-walled box section beam , 2006 .

[274]  Guoxing Lu,et al.  Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes , 2013 .

[275]  Linus Wågström,et al.  Structural adaptivity in frontal collisions: implications on crash pulse characteristics , 2005 .

[276]  Masoud Rais-Rohani,et al.  Analysis and Optimization of Externally Stiffened Crush Tubes , 2010 .

[277]  A. A. Nia,et al.  Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries , 2010 .

[278]  Tao Tang,et al.  Crushing analysis of thin-walled beams with various section geometries under lateral impact , 2016 .

[279]  Qing Li,et al.  Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes , 2014 .

[280]  Fengxiang Xu Enhancing material efficiency of energy absorbers through graded thickness structures , 2015 .

[281]  Michael R. Bambach,et al.  Composite steel–CFRP SHS tubes under axial impact , 2009 .

[282]  Weigang Chen,et al.  Experimental and numerical study on bending collapse of aluminum foam-filled hat profiles , 2001 .

[283]  Hoon Huh,et al.  Crushing analysis of polygonal columns and angle elements , 2010 .

[284]  G. Lu,et al.  Strength enhancement of aluminium foams and honeycombs by entrapped air under dynamic loadings , 2014 .

[285]  O. Hopperstad,et al.  Crashworthiness of aluminum extrusions subjected to oblique loading: experiments and numerical analyses , 2002 .

[286]  Guoxing Lu,et al.  Cutting and crushing of square aluminium/CFRP tubes , 2017 .

[287]  T. Wierzbicki,et al.  Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption , 2001 .

[288]  Hui Zhang,et al.  Axial crushing of tapered circular tubes with graded thickness , 2015 .

[289]  Tongxi Yu,et al.  Some Topics in Recent Advances and Applications of Structural Impact Dynamics , 2011 .

[290]  A. Niknejad,et al.  Theoretical and experimental study on the flattening deformation of the rectangular brazen and aluminum columns , 2013 .

[291]  Yucheng Liu,et al.  Crashworthiness design of multi-corner thin-walled columns , 2008 .

[292]  Ren-Jye Yang,et al.  An adaptive response surface method for crashworthiness optimization , 2013 .

[293]  A. A. Singace,et al.  Behaviour of axially crushed corrugated tubes , 1997 .

[294]  G. Liaghat,et al.  Experimental investigation on the lateral compression in the foam-filled circular tubes , 2012 .