Formalization and Closedness of Finite Dimensional Subspaces

This article presents a Coq formalization of finite dimensional subspaces of Hilbert spaces: we prove that such subspaces are closed submodules. This result is one of the basic blocks to prove the correctness of the finite element method which approaches the solution of partial differential equations. The exact solution is valued in a continuous volume (Hilbert space) while the approximation is valued in a mesh (finite dimensional subspace) which fits the shape of the volume. When applied to a submodule which is finite dimensional, Lax--Milgram Theorem and Céa Lemma ensure the finite element method is sufficiently precise. We rely on filters as basis for topological reasoning: filters provide a very general framework to express local properties and limits. However, most such mathematical literature does not rely on filters, making our Coq formalization unusual.

[1]  José Divasón Mallagaray Formalisation and execution of Linear Algebra: theorems and algorithms , 2016 .

[2]  Enrico Tassi,et al.  Canonical Structures for the Working Coq User , 2013, ITP.

[3]  Jeremy Avigad,et al.  A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.

[4]  Vincent Martin,et al.  A Coq formal proof of the Lax-Milgram theorem , 2017, CPP.

[5]  Johannes Hölzl,et al.  Type Classes and Filters for Mathematical Analysis in Isabelle/HOL , 2013, ITP.

[6]  Carsten Carstensen,et al.  Matlab Implementation of the Finite Element Method in Elasticity , 2002, Computing.

[7]  William E. Byrne,et al.  Cours de Mathematiques Speciales. Tome II , 1937 .

[8]  Micaela Mayero,et al.  Formalisation et automatisation de preuves en analyses réelle et numérique , 2001 .

[9]  John Harrison,et al.  A HOL Theory of Euclidean Space , 2005, TPHOLs.

[10]  P. Howard,et al.  Consequences of the axiom of choice , 1998 .

[11]  Vincent Martin,et al.  The Lax-Milgram Theorem. A detailed proof to be formalized in Coq , 2016, ArXiv.

[12]  Bas Spitters Constructive and intuitionistic integration theory and functional analysis , 2003 .

[13]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[14]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[15]  Guillaume Melquiond,et al.  Coquelicot: A User-Friendly Library of Real Analysis for Coq , 2015, Math. Comput. Sci..

[16]  Lawrence C. Paulson,et al.  The foundation of a generic theorem prover , 1989, Journal of Automated Reasoning.

[17]  Sofiène Tahar,et al.  Formalization of Complex Vectors in Higher-Order Logic , 2014, CICM.

[18]  Catherine Lelay Repenser la bibliothèque réelle de Coq : vers une formalisation de l'analyse classique mieux adaptée. (Reinventing Coq's Reals library : toward a more suitable formalization of classical analysis) , 2015 .

[19]  Georges Gonthier,et al.  The Four Colour Theorem: Engineering of a Formal Proof , 2008, ASCM.

[20]  Catherine Lelay How to express convergence for analysis in Coq , 2015 .

[21]  John Harrison,et al.  HOL Light: An Overview , 2009, TPHOLs.

[22]  Aloïs Brunel,et al.  Non-constructive complex analysis in Coq , 2011, TYPES.

[23]  Sofiène Tahar,et al.  Formalization of Infinite Dimension Linear Spaces with Application to Quantum Theory , 2013, NASA Formal Methods.