Demonstrating the scalability of a molecular dynamics application on a Petaflop computer

The IBM Blue Gene project has endeavored into the development of a cellular architecture computer with millions of concurrent threads of execution. One of the major challenges of this project is demonstrating that applications can successfully exploit this massive amount of parallelism. Starting from the sequential version of a well known molecular dynamics code, we developed a new application that exploits the multiple levels of parallelism in the Blue Gene cellular architecture. We perform both analytical and simulation studies of the behavior of this application when executed on a very large number of threads. As a result, we demonstrate that this class of applications can execute efficiently on a large cellular machine.

[1]  Josep Torrellas,et al.  Toward a cost-effective DSM organization that exploits processor-memory integration , 2000, Proceedings Sixth International Symposium on High-Performance Computer Architecture. HPCA-6 (Cat. No.PR00550).

[2]  Vivek Sarkar,et al.  Baring It All to Software: Raw Machines , 1997, Computer.

[3]  Larry A. Bergman,et al.  A design analysis of a hybrid technology multithreaded architecture for petaflops scale computation3 , 1999, ICS '99.

[4]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[5]  Ajay K. Royyuru,et al.  Blue Gene: A vision for protein science using a petaflop supercomputer , 2001, IBM Syst. J..

[6]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[7]  Dean M. Tullsen,et al.  Simultaneous multithreading: a platform for next-generation processors , 1997, IEEE Micro.

[8]  Frederic T. Chong,et al.  Active pages: a computation model for intelligent memory , 1998, ISCA.

[9]  Christoforos E. Kozyrakis,et al.  A case for intelligent RAM , 1997, IEEE Micro.

[10]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[11]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[12]  Seung-Moon Yoo,et al.  FlexRAM: toward an advanced intelligent memory system , 1999, Proceedings 1999 IEEE International Conference on Computer Design: VLSI in Computers and Processors (Cat. No.99CB37040).

[13]  Katherine Yelick,et al.  A Case for Intelligent RAM: IRAM , 1997 .

[14]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[15]  David W. Christianson,et al.  Novel Binding Mode of Hydroxamate Inhibitors to Human Carbonic Anhydrase II , 1997 .

[16]  Dean M. Tullsen,et al.  Simultaneous multithreading: Maximizing on-chip parallelism , 1995, Proceedings 22nd Annual International Symposium on Computer Architecture.

[17]  Jaewook Shin,et al.  Mapping Irregular Applications to DIVA, a PIM-based Data-Intensive Architecture , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[18]  P.M. Kogge,et al.  Pursuing a petaflop: point designs for 100 TF computers using PIM technologies , 1996, Proceedings of 6th Symposium on the Frontiers of Massively Parallel Computation (Frontiers '96).

[19]  William J. Dally,et al.  A bandwidth-efficient architecture for media processing , 1998, Proceedings. 31st Annual ACM/IEEE International Symposium on Microarchitecture.

[20]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[21]  Valerie E. Taylor,et al.  Parallel Molecular Dynamics: Implications for Massively Parallel Machines , 1997, J. Parallel Distributed Comput..