Crystal Structure of an ATP-Dependent DNA Ligase from Bacteriophage T7

[1]  D. Wigley,et al.  Characterization of proteolytic fragments of bacteriophage T7 DNA ligase. , 1996, Nucleic acids research.

[2]  G. Tan,et al.  Natural-product inhibitors of human DNA ligase I. , 1996, The Biochemical journal.

[3]  L. Pearl,et al.  The structural basis of specific base-excision repair by uracil–DNA glycosylase , 1996, Nature.

[4]  Shigenori Iwai,et al.  Atomic model of a pyrimidine dimer excision repair enzyme complexed with a dna substrate: Structural basis for damaged DNA recognition , 1995, Cell.

[5]  S. Shuman,et al.  Mutational analysis of mRNA capping enzyme identifies amino acids involved in GTP binding, enzyme-guanylate formation, and GMP transfer to RNA , 1995, Molecular and cellular biology.

[6]  J. V. Van Etten,et al.  Analysis of 43 kb of the Chlorella virus PBCV-1 330-kb genome: map positions 45 to 88. , 1995, Virology.

[7]  S. Shuman,et al.  Mutational analysis of vaccinia DNA ligase defines residues essential for covalent catalysis. , 1995, Virology.

[8]  S. Shuman,et al.  RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases , 1995, Molecular microbiology.

[9]  W. Lipscomb,et al.  The crystal structure of Haelll methyltransferase covalently complexed to DNA: An extrahelical cytosine and rearranged base pairing , 1995, Cell.

[10]  R J Roberts,et al.  On base flipping , 1995, Cell.

[11]  J. Deisenhofer,et al.  Crystal structure of DNA photolyase from Escherichia coli. , 1995, Science.

[12]  Xiaodong Cheng,et al.  DNA modification by methyltransferases. , 1995, Current opinion in structural biology.

[13]  A. Sancar Mechanisms of DNA excision repair. , 1994, Science.

[14]  S. Shuman,et al.  Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[16]  J. A. Gorman,et al.  Isolation and sequence of the t-RNA ligase-encoding gene of Candida albicans. , 1994, Gene.

[17]  R. Roberts,et al.  Hhal methyltransferase flips its target base out of the DNA helix , 1994, Cell.

[18]  T C Terwilliger,et al.  Structure of the gene V protein of bacteriophage f1 determined by multiwavelength x-ray diffraction on the selenomethionyl protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Hermann Schindelin,et al.  Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein , 1993, Nature.

[20]  S. Shuman,et al.  Covalent catalysis in nucleotidyl transfer. A KTDG motif essential for enzyme-GMP complex formation by mRNA capping enzyme is conserved at the active sites of RNA and DNA ligases. , 1993, The Journal of biological chemistry.

[21]  A. Kletzin Molecular characterisation of a DNA ligase gene of the extremely thermophilic archaeon Desulfurolobus ambivalens shows close phylogenetic relationship to eukaryotic ligases. , 1992, Nucleic acids research.

[22]  L. Dixon,et al.  An African swine fever virus gene with homology to DNA ligases. , 1992, Nucleic acids research.

[23]  S. Nagata,et al.  mRNA capping enzyme. Isolation and characterization of the gene encoding mRNA guanylytransferase subunit from Saccharomyces cerevisiae. , 1992, The Journal of biological chemistry.

[24]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[25]  T. Lindahl,et al.  Mammalian DNA ligases. , 1992, Annual review of biochemistry.

[26]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[27]  T. Lindahl,et al.  In vitro mutagenesis and functional expression in Escherichia coli of a cDNA encoding the catalytic domain of human DNA ligase I. , 1991, Nucleic acids research.

[28]  M. Carson RIBBONS 2.0 , 1991 .

[29]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[30]  T. Hynes,et al.  The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution , 1991, Proteins.

[31]  D. Barnes,et al.  Human DNA ligase I cDNA: cloning and functional expression in Saccharomyces cerevisiae. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Karplus,et al.  Crystallographic refinement by simulated annealing: application to crambin , 1989 .

[33]  A. Brunger Crystallographic refinement by simulated annealing , 1988 .

[34]  S. Heaphy,et al.  Effect of single amino acid changes in the region of the adenylylation site of T4 RNA ligase. , 1987, Biochemistry.

[35]  M. Engler,et al.  1 DNA Ligases , 1982 .

[36]  F. Studier,et al.  Nucleotide sequence from the genetic left end of bacteriophage T7 DNA to the beginning of gene 4. , 1981, Journal of molecular biology.

[37]  J. Hurwitz,et al.  Mechanism of mRNA capping by vaccinia virus guanylyltransferase: characterization of an enzyme--guanylate intermediate. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Söderhäll DNA ligases during rat liver regeneration , 1976, Nature.

[39]  A T Diaz,et al.  Mechanism of DNA chain growth. , 1975, Journal of molecular biology.

[40]  A. I. Gaziev [DNA ligases]. , 1974, Uspekhi sovremennoi biologii.

[41]  I. Lehman,et al.  Deoxyribonucleic acid ligase. A steady state kinetic analysis of the reaction catalyzed by the enzyme from Escherichia coli. , 1973, The Journal of biological chemistry.

[42]  T. Okazaki,et al.  Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Gellert Formation of covalent circles of lambda DNA by E. coli extracts. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Wilson,et al.  Determination of Absolute from Relative X-Ray Intensity Data , 1942, Nature.

[45]  U. R. Evans,et al.  Distribution of Attack on Iron or Zinc Partly Immersed in Chloride Solutions , 1942, Nature.