Robust t-distribution mixture modeling via spatially directional information

[1]  Zhang Yi,et al.  Grayscale image segmentation by spatially variant mixture model with student’s t-distribution , 2014, Multimedia Tools and Applications.

[2]  Q. M. Jonathan Wu,et al.  Gaussian-Mixture-Model-Based Spatial Neighborhood Relationships for Pixel Labeling Problem , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Ramin Zabih,et al.  Dynamic Programming and Graph Algorithms in Computer Vision , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Sotirios Chatzis,et al.  A variational Bayesian methodology for hidden Markov models utilizing Student's-t mixtures , 2011, Pattern Recognit..

[5]  Chunming Li,et al.  Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.

[6]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[7]  Q. M. Jonathan Wu,et al.  An Extension of the Standard Mixture Model for Image Segmentation , 2010, IEEE Transactions on Neural Networks.

[8]  Nikolas P. Galatsanos,et al.  Spatially Varying Mixtures Incorporating Line Processes for Image Segmentation , 2009, Journal of Mathematical Imaging and Vision.

[9]  Sotirios Chatzis,et al.  Signal Modeling and Classification Using a Robust Latent Space Model Based on $t$ Distributions , 2008, IEEE Transactions on Signal Processing.

[10]  Nikolas P. Galatsanos,et al.  Robust Image Segmentation with Mixtures of Student's t-Distributions , 2007, 2007 IEEE International Conference on Image Processing.

[11]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[12]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Nikolas P. Galatsanos,et al.  A Class-Adaptive Spatially Variant Mixture Model for Image Segmentation , 2007, IEEE Transactions on Image Processing.

[14]  Marina Meila,et al.  Comparing clusterings: an axiomatic view , 2005, ICML.

[15]  Nikolas P. Galatsanos,et al.  A spatially constrained mixture model for image segmentation , 2005, IEEE Transactions on Neural Networks.

[16]  Christopher M. Bishop,et al.  Robust Bayesian Mixture Modelling , 2005, ESANN.

[17]  Florence Forbes,et al.  Hidden Markov Random Field Model Selection Criteria Based on Mean Field-Like Approximations , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[19]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[20]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[21]  L. Vese,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[22]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[23]  Geoffrey J. McLachlan,et al.  Robust mixture modelling using the t distribution , 2000, Stat. Comput..

[24]  Thomas J. Hebert,et al.  Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm , 1998, IEEE Trans. Image Process..

[25]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[26]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[27]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[29]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[30]  W. Rudin Real and complex analysis , 1968 .

[31]  Q. M. Jonathan Wu,et al.  Robust Student's-t Mixture Model With Spatial Constraints and Its Application in Medical Image Segmentation , 2012, IEEE Transactions on Medical Imaging.

[32]  R. Zabih,et al.  What energy functions can be minimized via graph cuts , 2004 .

[33]  Gilles Celeux,et al.  EM procedures using mean field-like approximations for Markov model-based image segmentation , 2003, Pattern Recognit..

[34]  Marina Meila,et al.  Comparing Clusterings by the Variation of Information , 2003, COLT.

[35]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[36]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .