Constructing Sampling Schemes via Coupling: Markov Semigroups and Optimal Transport
暂无分享,去创建一个
[1] G. Metafune,et al. Feller semigroups and invariant measures , 2010 .
[2] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[3] R. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes , 1982 .
[4] Alain Durmus,et al. Piecewise deterministic Markov processes and their invariant measures , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[5] C. Hwang,et al. Accelerating diffusions , 2005, math/0505245.
[6] L. Zanelli,et al. Mathematical methods of Quantum Mechanics , 2017 .
[7] Ajay Jasra,et al. Antithetic Methods for Gibbs Samplers , 2009 .
[8] Radford M. Neal,et al. Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered Overrelaxation , 1995, Learning in Graphical Models.
[9] J. Snyder. Coupling , 1998, Critical Inquiry.
[10] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[11] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[12] Dirk P. Kroese,et al. Handbook of Monte Carlo Methods , 2011 .
[13] A. Mijatović,et al. On the Poisson equation for Metropolis–Hastings chains , 2015, Bernoulli.
[14] G. Roberts,et al. Ergodicity of the zigzag process , 2017, The Annals of Applied Probability.
[15] A. Doucet,et al. Gibbs flow for approximate transport with applications to Bayesian computation , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[16] Konstantinos Spiliopoulos,et al. Improving the Convergence of Reversible Samplers , 2016 .
[17] A. Doucet,et al. The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.
[18] G. Pagès,et al. Invariant measure of duplicated diffusions and application to Richardson-Romberg extrapolation , 2013, 1302.1651.
[19] V. Johnson. Studying Convergence of Markov Chain Monte Carlo Algorithms Using Coupled Sample Paths , 1996 .
[20] L. Lorenzi,et al. Analytical Methods for Markov Semigroups , 2006 .
[21] Sean P. Meyn,et al. A Liapounov bound for solutions of the Poisson equation , 1996 .
[22] Mark H. A. Davis. Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .
[23] G. Pavliotis,et al. Variance Reduction Using Nonreversible Langevin Samplers , 2015, Journal of statistical physics.
[24] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[25] Jo Graham,et al. Old and new , 2000 .
[26] C. Batty,et al. ONE-PARAMETER SEMIGROUPS OF POSITIVE OPERATORS (Lecture Notes in Mathematics 1184) , 1987 .
[27] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[28] G. Pavliotis,et al. Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from Probability Distributions , 2017, Journal of Statistical Physics.
[29] Adam Bowditch. Stochastic Analysis , 2013 .
[30] R. Nagel,et al. One-parameter Semigroups of Positive Operators , 1986 .
[31] Codina Cotar,et al. Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.
[32] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[33] S. Sénécal,et al. Forward Event-Chain Monte Carlo: a general rejection-free and irreversible Markov chain simulation method , 2017 .
[34] David Wilson,et al. Coupling from the past: A user's guide , 1997, Microsurveys in Discrete Probability.
[35] B. Leimkuhler,et al. The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.
[36] F. Kühn. Existence of (Markovian) solutions to martingale problems associated with L\'evy-type operators , 2018 .
[37] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[38] Tsuyoshi Murata,et al. {m , 1934, ACML.
[39] A. Duncan,et al. Limit theorems for the zig-zag process , 2016, Advances in Applied Probability.
[40] Ralph C. Smith,et al. Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .
[41] Jonathan C. Mattingly,et al. Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.
[42] P. Fearnhead,et al. The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.
[43] W. Kliemann. Recurrence and invariant measures for degenerate diffusions , 1987 .
[44] M. Rousset,et al. An Interacting Particle System Approach for Molecular Dynamics , 2005 .
[45] Luc Rey-Bellet,et al. Uncertainty quantification for generalized Langevin dynamics. , 2016, The Journal of chemical physics.
[46] P. Courrège. Sur la forme intégro-différentielle des opérateurs de $C^\infty _k$ dans $C$ satisfaisant au principe du maximum , 1966 .
[47] B. Jourdain,et al. Computation of sensitivities for the invariant measure of a parameter dependent diffusion , 2015, 1509.01348.
[48] Mark H. Davis. Markov Models and Optimization , 1995 .
[49] Jørund Gåsemyr,et al. Antithetic coupling of two Gibbs sampler chains , 2000 .
[50] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[51] Benedict J. Leimkuhler,et al. Ensemble preconditioning for Markov chain Monte Carlo simulation , 2016, Statistics and Computing.
[52] Houman Owhadi,et al. Handbook of Uncertainty Quantification , 2017 .
[53] Pierre Del Moral,et al. Mean Field Simulation for Monte Carlo Integration , 2013 .
[54] AN INTERACTING PARTICLE APPROACH SYSTEM APPROACH FOR MOLECULAR DYNAMICS , 2005 .
[55] J. M. Sanz-Serna,et al. Randomized Hamiltonian Monte Carlo , 2015, 1511.09382.
[56] C. Villani. Topics in Optimal Transportation , 2003 .
[57] R. Pinnau,et al. A consensus-based model for global optimization and its mean-field limit , 2016, 1604.05648.
[58] Radu V. Craiu,et al. Multiprocess parallel antithetic coupling for backward and forward Markov Chain Monte Carlo , 2005, math/0505631.
[59] A. Eberle. Couplings, distances and contractivity for diffusion processes revisited , 2013 .
[60] Do Young Eun,et al. An antithetic coupling approach to multi-chain based CSMA scheduling algorithms , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.
[61] H. Thorisson. Coupling, stationarity, and regeneration , 2000 .
[62] Gabriel Peyré,et al. Computational Optimal Transport , 2018, Found. Trends Mach. Learn..
[63] R. Schilling. Conservativeness and Extensions of Feller Semigroups , 1998 .
[64] Niels Jacob,et al. Pseudo-Differential Operators and Markov Processes , 1996 .
[65] M. Manhart,et al. Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.
[66] Mu-Fa Chen. Eigenvalues, inequalities and ergodic theory , 2000 .
[67] R. McCann,et al. Rectifiability of Optimal Transportation Plans , 2010, Canadian Journal of Mathematics.
[68] Gabriel Stoltz,et al. Partial differential equations and stochastic methods in molecular dynamics* , 2016, Acta Numerica.
[69] Radford M. Neal,et al. Improving Markov chain Monte Carlo Estimators by Coupling to an Approximating Chain , 2001 .
[70] Werner Krauth,et al. Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. , 2013, The Journal of chemical physics.
[71] Colin R. Reeves,et al. Genetic Algorithms—Principles and Perspectives , 2002, Operations Research/Computer Science Interfaces Series.
[72] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[73] T. Lindvall. Lectures on the Coupling Method , 1992 .
[74] K. Elworthy. ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .
[75] A. Doucet,et al. Piecewise-Deterministic Markov Chain Monte Carlo , 2017, 1707.05296.
[76] Peter W. Glynn,et al. Exact estimation for Markov chain equilibrium expectations , 2014, Journal of Applied Probability.
[77] P. Dellaportas,et al. Control variates for estimation based on reversible Markov chain Monte Carlo samplers , 2012 .
[78] Michela Ottobre,et al. Markov Chain Monte Carlo and Irreversibility , 2016 .
[79] J. Heng,et al. Unbiased Hamiltonian Monte Carlo with couplings , 2017, Biometrika.
[80] O. Barndorff-Nielsen,et al. Lévy Matters I , 2010 .
[81] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[82] Dilin Wang,et al. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.
[83] Christiane Lemieux,et al. Acceleration of the Multiple-Try Metropolis algorithm using antithetic and stratified sampling , 2007, Stat. Comput..
[84] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[85] A. Eberle,et al. Coupling and convergence for Hamiltonian Monte Carlo , 2018, The Annals of Applied Probability.
[86] Tomasz Komorowski,et al. Fluctuations in Markov Processes , 2012 .
[87] G. Stoltz,et al. Spectral methods for Langevin dynamics and associated error estimates , 2017, 1702.04718.
[88] P. Baxendale. Statistical Equilibrium and Two-Point Motion for a Stochastic Flow of Diffeomorphisms , 1991 .
[89] Fabio Rigat,et al. Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm , 2012, Comput. Stat. Data Anal..
[90] Colin J. Cotter,et al. Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .
[91] Kevin K. Lin,et al. Coupling control variates for Markov chain Monte Carlo , 2008, J. Comput. Phys..
[92] M. V. D. Panne,et al. Displacement Interpolation Using Lagrangian Mass Transport , 2011 .
[93] V. Johnson. A Coupling-Regeneration Scheme for Diagnosing Convergence in Markov Chain Monte Carlo Algorithms , 1998 .
[94] I. Amemiya,et al. On tensor products of Banach spaces , 1957 .
[95] Radford M. Neal. Circularly-Coupled Markov Chain Sampling , 2017, 1711.04399.
[96] Paul Fearnhead,et al. Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo , 2016, Statistical Science.