Infrared plus vacuum ultraviolet spectroscopy of neutral and ionic methanol monomers and clusters: new experimental results.

We present new observations of the infrared (IR) spectrum of neutral methanol and neutral and protonated methanol clusters employing IR plus vacuum ultraviolet (vuv) spectroscopic techniques. The tunable IR light covers the energy ranges of 2500-4500 cm(-1) and 5000-7500 cm(-1). The CH and OH fundamental stretch modes, the OH overtone mode, and combination bands are identified in the vibrational spectrum of supersonic expansion cooled methanol (2500-7500 cm(-1)). Cluster size selected IR plus vuv nonresonant infrared ion-dip infrared spectra of neutral methanol clusters, (CH(3)OH)(n) (n=2,[ellipsis (horizontal)],8), demonstrate that the methanol dimer has free and bonded OH stretch features, while clusters larger than the dimer display only hydrogen bonded OH stretch features. CH stretch mode spectra do not change with cluster size. These results suggest that all clusters larger than the dimer have a cyclic structure with OH groups involved in hydrogen bonding. CH groups are apparently not part of this cyclic binding network. Studies of protonated methanol cluster ions (CH(3)OH)(n)H(+) n=1,[ellipsis (horizontal)],7 are performed by size selected vuv plus IR photodissociation spectroscopy in the OH and CH stretch regions. Energies of the free and hydrogen bonded OH stretches exhibit blueshifts with increasing n, and these two modes converge to approximately 3670 and 3400 cm(-1) at cluster size n=7, respectively.

[1]  B. Mallik,et al.  A 118 nm vacuum ultraviolet laser/time-of-flight mass spectroscopic study of methanol and ethanol clusters in the vapor phase , 2002 .

[2]  F. Huisken,et al.  Infrared photodissociation of small methanol clusters , 1988 .

[3]  M. Taravillo,et al.  Effect of pressure on hydrogen bonding in liquid methanol. , 2002, Physical review letters.

[4]  A. Stone,et al.  Towards an accurate intermolecular potential for water , 1992 .

[5]  B Brutschy,et al.  The structure of microsolvated benzene derivatives and the role of aromatic substituents. , 2000, Chemical reviews.

[6]  Minimum energy conformation of ortho‐xylene in its ground and first excited electronic states , 1992 .

[7]  Sun Young Lee,et al.  Proton-transfer reactions within ionized methanol clusters: Mass spectrometric and molecular orbital studies , 1995 .

[8]  T. Zwier THE SPECTROSCOPY OF SOLVATION IN HYDROGEN-BONDED AROMATIC CLUSTERS , 1996 .

[9]  A. Fujii,et al.  Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions , 1998 .

[10]  D. S. Perry,et al.  An internal coordinate model of coupling between the torsion and C–H vibrations in methanol , 1998 .

[11]  W. Tao,et al.  A discharge flow-photoionization mass spectrometric study of hydroxymethyl radicals (H2COH and H2COD): photoionization spectrum and ionization energy , 1992 .

[12]  Gregory S. Tschumper,et al.  Assignment of the infrared spectra of the methanol trimer , 1999 .

[13]  S. Sarkar,et al.  Molecular clusters and correlations in liquid methanol at room temperature , 1993 .

[14]  Cook,et al.  Torsion-Rotation Energy Levels and the Hindering Potential Barrier for the Excited Vibrational State of the OH-Stretch Fundamental Band nu1 of Methanol. , 1998, Journal of molecular spectroscopy.

[15]  B. Schmidt,et al.  A perturbation approach to predict infrared spectra of small molecular clusters applied to methanol , 1993 .

[16]  James W. Taylor,et al.  A photoionization study of hydrogen-bound clusters in a supersonic molecular beam , 1980 .

[17]  U. Buck,et al.  Vibrational predissociation spectra of size selected methanol clusters: New experimental results , 1998 .

[18]  B. M. Powell,et al.  Structure of the α-phase of solid methanol , 1989 .

[19]  E. Bernstein,et al.  (σ3s) Rydberg states of cyclohexane, bicyclo[2.2.2]octane, and adamantane , 1994 .

[20]  T. Zwier,et al.  Density Functional Theory Calculations of the Structures, Binding Energies, and Infrared Spectra of Methanol Clusters , 1998 .

[21]  R. Lipson,et al.  Analysis of Xanthate Derivatives by Vacuum Ultraviolet Laser-Time-of-Flight Mass Spectrometry. , 1998, Analytical chemistry.

[22]  J. Rocca,et al.  Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5 eV soft x-ray laser. , 2006, The Journal of chemical physics.

[23]  U. Buck,et al.  Experimental evidence for an isomeric transition of size selected methanol hexamers , 1994 .

[24]  Timothy S. Zwier,et al.  RESONANT ION-DIP INFRARED SPECTROSCOPY OF BENZENE-(METHANOL)M CLUSTERS WITH M=1-6 , 1997 .

[25]  D. S. Perry,et al.  Vibrational overtone spectroscopy of jet-cooled methanol from 5000 to 14 000 cm(-1). , 2005, The Journal of chemical physics.

[26]  M. Kaloudis,et al.  Experimental study of the O–H ring vibrations of the methanol trimer , 1996 .

[27]  A. Narten,et al.  Hydrogen bonding in liquid methanol and ethanol determined by x‐ray diffraction , 1984 .

[28]  E. Bernstein,et al.  Identification, structure, and spectroscopy of neutral vanadium oxide clusters. , 2005, The journal of physical chemistry. A.

[29]  J. A. Odutola,et al.  Molecular beam electric deflection behavior and polarity of hydrogen-bonded complexes of ROH, RSH, and RNH , 1979 .

[30]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[31]  E. Bernstein,et al.  IR+vacuum ultraviolet (118 nm) nonresonant ionization spectroscopy of methanol monomers and clusters: neutral cluster distribution and size-specific detection of the OH stretch vibrations. , 2006, The Journal of chemical physics.

[32]  Steve Scheiner,et al.  Hydrogen Bonding: A Theoretical Perspective , 1997 .

[33]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[34]  F. Huisken,et al.  Infrared spectroscopy of size-selected water and methanol clusters. , 2000, Chemical reviews.

[35]  Axel Kulcke,et al.  Dissociation of small methanol clusters after excitation of the O–H stretch vibration at 2.7 μ , 1991 .

[36]  S. Lin,et al.  Isomeric Transitions between Linear and Cyclic H+(CH3OH)4,5: Implications for Proton Migration in Liquid Methanol , 1999 .

[37]  Y. Lee,et al.  Hydrogen-Bond Rearrangement and Intermolecular Proton Transfer in Protonated Methanol Clusters , 1999 .

[38]  B. D. Kay,et al.  Molecular beam electric deflection study of the hydrogen-bonded water, methanol, and ethanol clusters (H2O)N, (CH3OH)N, and (C2H5OH)N , 1985 .

[39]  A. Fujii,et al.  Morphology of protonated methanol clusters: an infrared spectroscopic study of hydrogen bond networks of H+(CH3OH)n (n = 4-15). , 2005, The journal of physical chemistry. A.