A two-level stochastic collocation method for semilinear elliptic equations with random coefficients

In this work, we propose a novel two-level discretization for solving semilinear elliptic equations with random coefficients. Motivated by the two-grid method for deterministic partial differential equations (PDEs) introduced by Xu \cite{xu1994novel}, our two-level stochastic collocation method utilizes a two-grid finite element discretization in the physical space and a two-level collocation method in the random domain. In particular, we solve semilinear equations on a coarse mesh $\mathcal{T}_H$ with a low level stochastic collocation (corresponding to the polynomial space $\mathcal{P}_{\boldsymbol{P}}$) and solve linearized equations on a fine mesh $\mathcal{T}_h$ using high level stochastic collocation (corresponding to the polynomial space $\mathcal{P}_{\boldsymbol{p}}$). We prove that the approximated solution obtained from this method achieves the same order of accuracy as that from solving the original semilinear problem directly by stochastic collocation method with $\mathcal{T}_h$ and $\mathcal{P}_{\boldsymbol{p}}$. The two-level method is computationally more efficient than the standard stochastic collocation method for solving nonlinear problems with random coefficients. Numerical experiments are provided to verify the theoretical results.

[1]  M. Shinozuka,et al.  Monte Carlo Solution of Nonlinear Vibrations , 1971 .

[2]  Yunqing Huang,et al.  A two‐grid method for expanded mixed finite‐element solution of semilinear reaction–diffusion equations , 2003 .

[3]  William Layton,et al.  A TWO-LEVEL DISCRETIZATION METHOD FOR THE STATIONARY MHD EQUATIONS , 1997 .

[4]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[5]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[6]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[7]  George Adomian,et al.  Nonlinear Stochastic Systems Theory and Applications to Physics , 1988 .

[8]  Mary F. Wheeler,et al.  A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations , 1998 .

[9]  Xiang Ma,et al.  A stochastic mixed finite element heterogeneous multiscale method for flow in porous media , 2011, J. Comput. Phys..

[10]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[11]  C.-S. Chien,et al.  A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..

[12]  Tiao Lu,et al.  Numerical comparison of three stochastic methods for nonlinear PN junction problems , 2014 .

[13]  Long Chen,et al.  Block triangular preconditioning for stochastic Galerkin method , 2013, J. Comput. Appl. Math..

[14]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[15]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[16]  Assyr Abdulle,et al.  A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems , 2011, Numerische Mathematik.

[17]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[18]  William Layton,et al.  Two-level Picard and modified Picard methods for the Navier-Stokes equations , 1995 .

[19]  Miloslav Feistauer,et al.  Finite element solution of nonlinear elliptic problems , 1987 .

[20]  Thomas Y. Hou,et al.  A Multiscale Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients , 2015, Multiscale Model. Simul..

[21]  Mary F. Wheeler,et al.  Two-grid methods for mixed finite element approxi-mations of nonlinear parabolic equations , 1994 .

[22]  Lutz Tobiska,et al.  A Two-Level Method with Backtracking for the Navier--Stokes Equations , 1998 .

[23]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[24]  P. Caines Linear Stochastic Systems , 1988 .

[25]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[26]  V. Girault,et al.  Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. , 2001 .

[27]  S. Vandewalle,et al.  Newton-Multigrid for Biological Reaction-Diffusion Problems with Random Coefficients , 2012 .

[28]  S. Aachen Stochastic Differential Equations An Introduction With Applications , 2016 .

[29]  Yanping Chen,et al.  Analysis of two‐grid methods for reaction‐diffusion equations by expanded mixed finite element methods , 2007 .

[30]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[31]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[32]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[33]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods for Stochastic Porous Media Flows , 2008, SIAM J. Sci. Comput..

[34]  Daniel M. Tartakovsky,et al.  Stochastic Collocation Methods for Nonlinear Parabolic Equations with Random Coefficients , 2016, SIAM/ASA J. Uncertain. Quantification.

[35]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[36]  Colas Schretter,et al.  Monte Carlo and Quasi-Monte Carlo Methods , 2016 .

[37]  T. Utnes,et al.  Two-grid finite element formulations of the incompressible Navier-Stokes equations , 1997 .

[38]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[39]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[40]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[41]  Nicola Bellomo,et al.  Nonlinear Stochastic Systems in Physics and Mechanics , 1987 .

[42]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[43]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .