Along-track resolution enhancement for bistatic imaging in burst-mode operation

Wide-swath synthetic aperture radar (SAR) imaging modes, such as ScanSAR or Terrain Observation by Progressive Scan SAR, share the synthetic aperture length between beam positions. This leads to a degraded along-track resolution compared to the conventional Stripmap mode.We show that this degraded resolution can be enhanced in the case of a bistatic configuration by exploiting the sidelobe emissions of the elevation beams illuminating the adjacent subswaths. If the SNR of the backscattered signals is sufficient, the performance of the Stripmap mode can even be restored. This concept becomes particularly useful when spaceborne illuminators of opportunity are considered. Indeed, the imaging mode of spaceborne SAR instruments is most often a wide-swath mode. Making it possible to exploit those modes to produce images with high azimuthal resolution dramatically increases the number of useful images that can be produced using emitters of opportunity. Signals from any radar satellite in the receiving band of the receiver can be used, thus further decreasing the revisit time of the area of interest. This paper proposes a cross-range resolution-enhancement method that provides an enhanced cross-range resolution compared to the one obtained by the classical burst-mode SAR processing. This method is experimentally validated using measurements acquired in a space-ground bistatic configuration.

[1]  Gerhard Krieger,et al.  Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying , 2010, Proceedings of the IEEE.

[2]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[3]  H. Cantalloube,et al.  A first bistatic airborne SAR interferometry experiment - preliminary results , 2004, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal.

[4]  Michael Eineder,et al.  ScanSAR processing using standard high precision SAR algorithms , 1996, IEEE Trans. Geosci. Remote. Sens..

[5]  E. Attema,et al.  ASAR – Envisat ’ s Advanced Synthetic Aperture Radar Building on ERS Achievements towards Future Earth Watch Missions , 2000 .

[6]  Xavier Neyt,et al.  Improved cross-range resolution in TOPSAR imaging using Sentinel-1A in bistatic operation , 2015, 2015 IEEE Radar Conference (RadarCon).

[7]  Pietro Guccione,et al.  Optimal "focusing" for low resolution ScanSAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[8]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[9]  F. Li,et al.  Ambiguities in Spacebornene Synthetic Aperture Radar Systems , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Josef Mittermayer,et al.  TOPS Imaging With TerraSAR-X: Mode Design and Performance Analysis , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Xavier Neyt,et al.  ScanSAR resolution enhancement in bistatic operation , 2012 .

[12]  Manfred Zink Update on Antenna Elevation Pattern Estimation from Rain Forest Data , 2003 .

[13]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[14]  A. P. Luscombe,et al.  RADARSAT (SAR imaging) , 1991, Proc. IEEE.

[15]  Malcolm Davidson,et al.  SAOCOM-CS - A passive companion to SAOCOM for single-pass L-band SAR interferometry , 2014 .

[16]  Richard K. Moore,et al.  Scanning Spaceborne Synthetic Aperture Radar with Integrated Radiometer , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Gerhard Krieger,et al.  Bistatic TerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, Data Processing, and Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[18]  K.Venkatesh Prasad,et al.  Fundamentals of statistical signal processing: Estimation theory: by Steven M. KAY; Prentice Hall signal processing series; Prentice Hall; Englewood Cliffs, NJ, USA; 1993; xii + 595 pp.; $65; ISBN: 0-13-345711-7 , 1994 .

[19]  Albert Aguasca,et al.  SABRINA: A SAR Bistatic Receiver for Interferometric Applications , 2007, IEEE Geoscience and Remote Sensing Letters.

[20]  D.A. Gray,et al.  The Ingara Bistatic SAR Upgrade: First Results , 2008, 2008 International Conference on Radar.

[21]  G. Krieger,et al.  ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets , 2006 .

[22]  Chris Baker,et al.  Bistatic radar using satellite-borne illuminators , 2002, RADAR 2002.

[23]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[24]  Francesco De Zan,et al.  TOPSAR: Terrain Observation by Progressive Scans , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Piotr Samczynski,et al.  Passive bistatic SAR imaging — Challenges and limitations , 2014, IEEE Aerospace and Electronic Systems Magazine.

[26]  Chris Baker,et al.  Bistatic radar using spaceborne illuminator of opportunity , 2002 .

[27]  Richard Bamler,et al.  Burst-mode and ScanSAR interferometry , 2002, IEEE Trans. Geosci. Remote. Sens..

[28]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .