A note on gradient estimates for the heat semigroup on nonisotropic Heisenberg groups

Abstract. In this note we obtain gradient estimates for the heat semigroup on nonisotropic Heisenberg groups. More precisely, our aim is to get the H.-Q. Li inequality on nonisotropic Heisenberg groups, which is a generalization of the original result on the classical Heisenberg group of dimension 3 and a counterpart of the inequality on the H-type groups. Our proof is based on a Cheeger type inequality, which is an approach proposed by Bakry et al.

[1]  Nathaniel Eldredge Gradient estimates for the subelliptic heat kernel on H-type groups , 2009, 0904.1781.

[2]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[3]  On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group , 2016, 1607.02741.

[4]  T. Melcher,et al.  Hypoelliptic heat kernel inequalities on the Heisenberg group , 2005 .

[5]  Maria Gordina,et al.  Logarithmic Sobolev inequalities on non-isotropic Heisenberg groups , 2021 .

[6]  Djalil CHAFAÏ,et al.  On gradient bounds for the heat kernel on the Heisenberg group , 2007, 0710.3139.

[7]  Yehui Zhang,et al.  Revisiting the heat kernel on isotropic and nonisotropic Heisenberg groups* , 2018, Communications in Partial Differential Equations.

[8]  B. Gaveau,et al.  Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , 2000 .

[9]  Adam S. Sikora,et al.  Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem , 2006, math/0609429.

[10]  Hong-Quan Li Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg , 2006 .

[11]  Asymptotics for some green kernels on the Heisenberg group and the Martin boundary , 1989 .

[12]  Gradient estimates for the heat kernels in higher dimensional Heisenberg groups , 2010 .

[13]  R. Strichartz Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .

[14]  Nathaniel Eldredge Precise estimates for the subelliptic heat kernel on H-type groups , 2008, 0810.3218.

[15]  F. Lust-Piquard A simple-minded computation of heat kernels on Heisenberg groups , 2003 .

[16]  Jun Hu,et al.  Gradient Estimates for the Heat Semigroup on H-Type Groups , 2010 .

[17]  J. Gauthier,et al.  The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups , 2008, 0806.0734.

[18]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[19]  P. Maheux,et al.  Analyse sur les boules d'un opérateur sous-elliptique , 1995 .

[20]  Asymptotics for the heat kernel on H-type groups , 2017, 1710.00198.

[21]  Elton P. Hsu,et al.  Martingale Representation and a Simple Proof of Logarithmic Sobolev Inequalities on Path Spaces , 1997 .

[22]  Hong-Quan Li Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg , 2007 .

[23]  Hong-Quan Li Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg , 2010 .