High-temperature creep rate and dislocation structure in a dilute copper-aluminium alloy

[1]  J. E. Dorn,et al.  Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg , 1972 .

[2]  J. Čadek,et al.  Dislocation structure and applied, effective and internal stress in high-temperature creep of alpha iron , 1972 .

[3]  T. Takeuchi Load-Elongation Curves and Creep Curves of Pure Single Crystals , 1972 .

[4]  J. Jonas,et al.  Flow stress and substructural change during the transient deformation of Armco iron and silicon steel , 1971 .

[5]  W. Nix,et al.  Interpretation of high temperature plastic deformation in terms of measured effective stresses , 1970 .

[6]  L. Cuddy Internal stresses and structures developed during creep , 1970 .

[7]  A. Solomon New Techniques and Apparatus for Examining the Elevated Temperature Deformation of Metals , 1969 .

[8]  J. Jonas The back stress in high temperature deformation , 1969 .

[9]  G. B. Gibbs Creep and stress relaxation studies with polycrystalline magnesium , 1966 .

[10]  E. Parker,et al.  Relationship between Small‐Angle Dislocation Boundaries and Creep , 1956 .

[11]  J. Jonas,et al.  Substructure strengthening in zirconium and zirconium-tin alloys , 1972 .

[12]  S. Karashima,et al.  Internal Stress and Dislocation Structure during Sigmoidal Transient Creep of a Copper–16 at.-% Aluminium Alloy , 1972 .

[13]  M. Otsuka,et al.  Mechanism of High Temperature Creep of Aluminum-Magnesium Solid Solution Alloys , 1971 .

[14]  Tadao Watanabe,et al.  An Analysis of High Temperature Creep in Alpha Iron Based on the Super Jog Mechanism , 1970 .

[15]  J. Jonas,et al.  The Hall–Petch Relation and High-Temperature Subgrains , 1970 .

[16]  J. Embury,et al.  The Role of Internal Stress in the High-Temperature Deformation of Copper , 1970 .