Instrumentation for studies of cochlear mechanics: From von Békésy forward

Georg von Békésy designed the instruments needed for his research. He also created physical models of the cochlea allowing him to manipulate the parameters (such as volume elasticity) that could be involved in controlling traveling waves. This review is about the specific devices that he used to study the motion of the basilar membrane thus allowing the analysis that lead to his Nobel Prize Award. The review moves forward in time mentioning the subsequent use of von Békésy's methods and later technologies important for motion studies of the organ of Corti. Some of the seminal findings and the controversies of cochlear mechanics are mentioned in relation to the technical developments.

[1]  N. Cooper An improved heterodyne laser interferometer for use in studies of cochlear mechanics , 1999, Journal of Neuroscience Methods.

[2]  Reverse wave propagation in the cochlea , 2008, Proceedings of the National Academy of Sciences.

[3]  Steven L. Jacques,et al.  A differentially amplified motion in the ear for near-threshold sound detection , 2011, Nature Neuroscience.

[4]  Sietse M van Netten,et al.  Channel gating forces govern accuracy of mechano-electrical transduction in hair cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Hubbard,et al.  A traveling-wave amplifier model of the cochlea. , 1993, Science.

[6]  W Hemmert,et al.  Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Thomas G Bifano,et al.  A hydromechanical biomimetic cochlea: experiments and models. , 2006, The Journal of the Acoustical Society of America.

[8]  Manfred Kössl,et al.  A Targeted Deletion in α-Tectorin Reveals that the Tectorial Membrane Is Required for the Gain and Timing of Cochlear Feedback , 2000, Neuron.

[9]  S M Khanna,et al.  Basilar membrane tuning in the cat cochlea. , 1982, Science.

[10]  G. Békésy Direct observation of the vibrations of the cochlear partition under a microscope. , 1952, Acta oto-laryngologica.

[11]  M. Ruggero,et al.  Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  S. M. Khanna,et al.  The tuned displacement response of the hearing organ is generated by the outer hair cells , 1992, Neuroscience.

[13]  P. Dallos,et al.  Direct visualization of organ of corti kinematics in a hemicochlea. , 1999, Journal of neurophysiology.

[14]  Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation , 1986, Hearing Research.

[15]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[16]  B. D. Ripley,et al.  [Neural Networks: A Review from Statistical Perspective]: Comment , 1994 .

[17]  Karl Grosh,et al.  A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli. , 2007, The Journal of the Acoustical Society of America.

[18]  K. D. Karavitaki,et al.  Evidence for outer hair cell driven oscillatory fluid flow in the tunnel of corti. , 2007, Biophysical journal.

[19]  D. Kemp,et al.  Analyses of Mössbauer mechanical measurements indicate that the cochlea is mechanically active. , 1993, The Journal of the Acoustical Society of America.

[20]  I. Russell,et al.  Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier , 2008, Nature Neuroscience.

[21]  Mechanical Preprocessing of Amplitude-Modulated Sounds in the Apex of the Cochlea , 2006, ORL.

[22]  A. Gummer,et al.  Travelling wave motion along the pigeon basilar membrane. , 1986, ORL; journal for oto-rhino-laryngology and its related specialties.

[23]  M. Bortolozzi,et al.  ATP-mediated cell–cell signaling in the organ of Corti: the role of connexin channels , 2010, Purinergic Signalling.

[24]  M Kössl,et al.  Basilar membrane resonance in the cochlea of the mustached bat. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Karl Grosh,et al.  Microengineered hydromechanical cochlear model. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Fercher,et al.  Eye-length measurement by interferometry with partially coherent light. , 1988, Optics letters.

[27]  Adolf Friedrich Fercher,et al.  Ophthalmic Laser Interferometry , 1986, Other Conferences.

[28]  W. S. Rhode,et al.  Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts , 1992, Hearing Research.

[29]  W S Rhode Measurement of Vibration of the Basilar Membrane in the Squirrel Monkey , 1974, The Annals of otology, rhinology, and laryngology.

[30]  W Hemmert,et al.  [Laser vibrometry. A middle ear and cochlear analyzer for noninvasive studies of middle and inner ear function disorders]. , 1997, HNO.

[31]  G. Békésy Vibration of the Head in a Sound Field and Its Role in Hearing by Bone Conduction , 1948 .

[32]  Sunil Puria,et al.  Developing a Physical Model of the Human Cochlea Using Microfabrication Methods , 2006, Audiology and Neurotology.

[33]  Tianying Ren,et al.  Measurement of cochlear power gain in the sensitive gerbil ear. , 2011, Nature communications.

[34]  I. Russell,et al.  The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Ruikang K. Wang,et al.  Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study. , 2010, Journal of biomedical optics.

[36]  John S. Oghalai,et al.  Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography , 2011, Optics express.

[37]  S. Khanna,et al.  Dose rate to the inner ear during Mössbauer experiments. , 1983, Physics in medicine and biology.

[38]  M. Ruggero Systematic errors in indirect estimates of basilar membrane travel times. , 1980, The Journal of the Acoustical Society of America.

[39]  J. Saunders,et al.  Intra- and extracellular calcium modulates stereocilia stiffness on chick cochlear hair cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Khanna,et al.  Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a laser interferometer. , 1968, The Journal of the Acoustical Society of America.

[41]  R. Chadwick,et al.  Dual traveling waves in an inner ear model with two degrees of freedom. , 2011, Physical review letters.

[42]  Tianying Ren,et al.  Reverse propagation of sound in the gerbil cochlea , 2004, Nature Neuroscience.

[43]  Experimental Look at Cochlear Mechanics: Approche expérimental de la mécanique cochléaire , 1992 .

[44]  J. Gale,et al.  Damage-induced cell–cell communication in different cochlear cell types via two distinct ATP-dependent Ca2+ waves , 2010, Purinergic Signalling.

[45]  T. Ren Longitudinal pattern of basilar membrane vibration in the sensitive cochlea , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Ian J. Russell,et al.  A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea , 2005, Journal of Neuroscience Methods.

[47]  D. M. Freeman,et al.  Longitudinally propagating traveling waves of the mammalian tectorial membrane , 2007, Proceedings of the National Academy of Sciences.

[48]  Andrew J. Oxenham,et al.  Otoacoustic Estimation of Cochlear Tuning: Validation in the Chinchilla , 2010, Journal of the Association for Research in Otolaryngology.

[49]  A. Bearden,et al.  Laser-feedback measurements of turtle basilar membrane motion using direct reflection , 1995, Hearing Research.

[50]  W. T. Peake,et al.  Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity. , 1980, The Journal of the Acoustical Society of America.

[51]  W. T. Peake,et al.  Experiments in Hearing , 1963 .

[52]  Anthony W. Gummer,et al.  Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  W. Hemmert,et al.  Laservibrometrie Ein Mittelohr- und Kochleaanalysator zur nicht-invasiven Untersuchung von Mittel- und Innenohrfunktionsstörungen , 1997, HNO.

[54]  Steven L. Jacques,et al.  In Vivo Outer Hair Cell Length Changes Expose the Active Process in the Cochlea , 2012, PloS one.

[55]  H J Tiziani,et al.  Remarks about the depth resolution of heterodyne interferometers in cochlear investigations. , 2001, The Journal of the Acoustical Society of America.

[56]  A. Nuttall,et al.  The mechanical waveform of the basilar membrane. I. Frequency modulations ("glides") in impulse responses and cross-correlation functions. , 1997, The Journal of the Acoustical Society of America.

[57]  I. Russell,et al.  The spatial and temporal representation of a tone on the guinea pig basilar membrane. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J R Johnstone,et al.  Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. , 1975, The Journal of the Acoustical Society of America.

[59]  Zhongping Chen,et al.  Imaging the Internal Structure of the Rat Cochlea Using Optical Coherence Tomography at 0.827 μm and 1.3 μm , 2004 .

[60]  C. Richter,et al.  Motion analysis in the hemicochlea. , 2003, Biophysical journal.

[61]  L. Robles,et al.  Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. , 1986, The Journal of the Acoustical Society of America.

[62]  Andrew R. Barron [Neural Networks: A Review from Statistical Perspective]: Comment , 1994 .

[63]  L. Robles,et al.  Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.

[64]  Mario A. Ruggero,et al.  Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration , 1991, Hearing Research.

[65]  Sir James Lighthill,et al.  Biomechanics of Hearing Sensitivity , 1991 .

[66]  D. Agard,et al.  The use of a charge-coupled device for quantitative optical microscopy of biological structures. , 1987, Science.

[67]  Auditory nonlinearities: the role of cochlear hydromechanics , 1986, Hearing Research.

[68]  J. Boutet de Monvel,et al.  Measuring hearing organ vibration patterns with confocal microscopy and optical flow. , 2004, Biophysical journal.

[69]  Mats Ulfendahl,et al.  Internal Shearing within the Hearing Organ Evoked by Basilar Membrane Motion , 2002, The Journal of Neuroscience.

[70]  Ryan L. Shelton,et al.  Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography. , 2011, Optics letters.

[71]  M. Ulfendahl,et al.  A digital heterodyne laser interferometer for studying cochlear mechanics , 2009, Journal of Neuroscience Methods.

[72]  I. Russell,et al.  Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea. , 1999, Journal of neurophysiology.

[73]  T Ren,et al.  Recording depth of the heterodyne laser interferometer for cochlear vibration measurement. , 2001, The Journal of the Acoustical Society of America.

[74]  M. Lawrence Dynamic range of the cochlear transducer. , 1965, Cold Spring Harbor Symposia on Quantitative Biology.

[75]  Ombeline de La Rochefoucauld,et al.  Recording depth and signal competition in heterodyne interferometry. , 2005, The Journal of the Acoustical Society of America.

[76]  Steven L. Jacques,et al.  Low coherence interferometry of the cochlear partition , 2006, Hearing Research.

[77]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[78]  A Dancer Experimental look at cochlear mechanics. , 1992, Audiology : official organ of the International Society of Audiology.

[79]  B. M. Johnstone,et al.  Nonlinear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochlea , 1980, Hearing Research.

[80]  E S Olson,et al.  Intracochlear pressure measurements related to cochlear tuning. , 2001, The Journal of the Acoustical Society of America.

[81]  Anders Fridberger,et al.  Local mechanical stimulation of the hearing organ by laser irradiation , 2006, Neuroreport.

[82]  A. Fridberger,et al.  The endocochlear potential alters cochlear micromechanics. , 2011, Biophysical journal.

[83]  Michael G. Nichols,et al.  Metabolic imaging of the organ of corti — A window on cochlea bioenergetics , 2009, Brain Research.

[84]  E. de Boer,et al.  The mechanical waveform of the basilar membrane. III. Intensity effects. , 2000, The Journal of the Acoustical Society of America.

[85]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[86]  J. Boutet de Monvel,et al.  Sound-evoked radial strain in the hearing organ. , 2007, Biophysical journal.

[87]  Ian J. Russell,et al.  SHARPENED COCHLEAR TUNING IN A MOUSE WITH A GENETICALLY MODIFIED TECTORIAL MEMBRANE , 2007, Nature Neuroscience.

[88]  Hans J. Tiziani,et al.  Low-coherence fibre heterodyne interferometer for both dc and high-frequency vibration measurements in the inner ear , 1998 .

[89]  Sound-induced differential motion within the hearing organ , 2003, Nature Neuroscience.

[90]  P J Kolston,et al.  Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mammalian cochlear mechanics. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Alfred L. Nuttall,et al.  Laser Doppler velocimetry of basilar membrane vibration , 1991, Hearing Research.

[92]  B. M. Johnstone,et al.  Basilar Membrane Vibration Examined with the M�ssbauer Technique , 1967, Science.

[93]  D. M. Freeman,et al.  Doppler optical coherence microscopy for studies of cochlear mechanics. , 2006, Journal of biomedical optics.

[94]  Auditory Nerve Excitation via a Non-traveling Wave Mode of Basilar Membrane Motion , 2011, Journal of the Association for Research in Otolaryngology.