Separation of Blended Seismic Data Using the Synchrosqueezed Curvelet Transform

Time–frequency (TF) analysis algorithms are widely used to process seismic data. Unfortunately, most TF analysis algorithms cannot process 2-D seismic data, which contain more information than 1-D data. In fact, 2-D <inline-formula> <tex-math notation="LaTeX">$x$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> domain seismic data should be analyzed in the multi-dimensional phase space (MDPS). In this letter, we develop and explain an MDPS analysis method for 2-D seismic data. In order to map the 2-D seismic data into MDPS, the synchrosqueezed curvelet transform (SSCT) is extended from the <inline-formula> <tex-math notation="LaTeX">$x$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$y$ </tex-math></inline-formula> domain to the <inline-formula> <tex-math notation="LaTeX">$x$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> domain. By comparing the 2-D synchrosqueezing transform (SST) with the 1-D SST, we explain how the 2-D SST makes the connection between the 4-D curvelet domain and the 4-D space-time-wavenumber-frequency domain (<italic>xt</italic>–<italic>kf</italic> domain). This new analytical method can help us to obtain the angle, scale, frequency, and wavenumber information, which are useful to separate the overlapped seismic data. The numerical example and real data example illustrate the effectiveness of this method.

[1]  Victor Sucic,et al.  Nonlinear IF Estimation Based on the Pseudo WVD Adapted Using the Improved Sliding Pairwise ICI Rule , 2009, IEEE Signal Processing Letters.

[2]  Lalu Mansinha,et al.  Localization of the complex spectrum: the S transform , 1996, IEEE Trans. Signal Process..

[3]  Gerlind Plonka-Hoch,et al.  The Curvelet Transform , 2010, IEEE Signal Processing Magazine.

[4]  Lexing Ying,et al.  Synchrosqueezed Curvelet Transform for Two-Dimensional Mode Decomposition , 2014, SIAM J. Math. Anal..

[5]  Ning Wu,et al.  Noise Attenuation for 2-D Seismic Data by Radial-Trace Time-Frequency Peak Filtering , 2011, IEEE Geoscience and Remote Sensing Letters.

[6]  J. Morlet,et al.  Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .

[7]  Jing-Hua Gao,et al.  Time-Frequency Analysis of Seismic Data Using Synchrosqueezing Transform , 2014, IEEE Geoscience and Remote Sensing Letters.

[8]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[9]  Lexing Ying,et al.  Quantitative Canvas Weave Analysis Using 2-D Synchrosqueezed Transforms: Application of time-frequency analysis to art investigation , 2015, IEEE Signal Processing Magazine.

[10]  C. Robert Pinnegar,et al.  The S-transform with windows of arbitrary and varying shape , 2003 .

[11]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[12]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[13]  Jing-Hua Gao,et al.  Generalized S Transform and Seismic Response Analysis of Thin Interbedss Surrounding Regions by Gps , 2003 .

[14]  Jinghuai Gao,et al.  Seismic Time–Frequency Analysis via STFT-Based Concentration of Frequency and Time , 2017, IEEE Geoscience and Remote Sensing Letters.

[15]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[16]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[17]  Jianzhong Zhang,et al.  Synchrosqueezing S-Transform and Its Application in Seismic Spectral Decomposition , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Wei Liu,et al.  Seismic Time–Frequency Analysis via Empirical Wavelet Transform , 2016, IEEE Geoscience and Remote Sensing Letters.

[19]  G. Partyka,et al.  Interpretational applications of spectral decomposition in reservoir characterization , 1999 .

[20]  C. Robert Pinnegar,et al.  The Bi-Gaussian S-Transform , 2002, SIAM J. Sci. Comput..