Fungal morphology and metabolite production in submerged mycelial processes.

The use of fungi for the production of commercial products is ancient, but it has increased rapidly over the last 50 years. Fungi are morphologically complex organisms, differing in structure at different times in their life cycle, differing in form between surface and submerged growth, differing also with the nature of the growth medium and physical environment. Many genes and physiological mechanisms are involved in the process of morphogenesis. In submerged culture, a large number of factors contribute to the development of any particular morphological form. Factors affecting morphology include the type and concentration of carbon substrate, levels of nitrogen and phosphate, trace minerals, dissolved oxygen and carbon dioxide, pH and temperature. Physical factors affecting morphology include fermenter geometry, agitation systems, rheology and the culture modes, whether batch, fed-batch or continuous. In many cases, particular morphological forms achieve maximum performance. It is a very difficult task to deduce unequivocal general relationships between process variables, product formation and fungal morphology since too many parameters influence these interrelationships and the role of many of them is still not fully understood. The use of automatic image analysis systems during the last decade proved an invaluable tool for characterizing complex mycelial morphologies, physiological states and relationships between morphology and productivity. Quantified morphological information can be used to build morphologically structured models of predictive value. The mathematical modeling of the growth and process performance has led to improved design and operation of mycelial fermentations and has improved the ability of scientists to translate laboratory observations into commercial practice. However, it is still necessary to develop improved and new experimental techniques for understanding phenomena such as the mechanisms of mycelial fragmentation and non-destructive measurement of concentration profiles in mycelial aggregates. This would allow the establishment of a process control on a physiological basis. This review is focused on the factors influencing the fungal morphology and metabolite production in submerged culture.

[1]  M. Pons,et al.  Characterization of Penicillium chrysogenum physiology in submerged cultures by color and monochrome image analysis , 1995, Biotechnology and bioengineering.

[2]  Enrique Galindo,et al.  Advances in Bioprocess Engineering , 1994, Springer Netherlands.

[3]  N. Plomley Formation of the Colony in the Fungus Chaetomium , 1959 .

[4]  L. Du,et al.  Morphological changes of Rhizopus chinesis 12 in submerged culture and its relationship with antibiotic production , 2003 .

[5]  G. Gadd,et al.  The Growing Fungus , 1995, Springer Netherlands.

[6]  O. Loera,et al.  Identification of growth phenotypes in Aspergillus niger pectinase over-producing mutants using image analysis procedures , 1998 .

[7]  C. Thomas,et al.  Fully‐Automatic Measurement of Mycelial Morphology by Image Analysis , 1992 .

[8]  K. R. Clarke,et al.  Control of hyphal orientation in colonies of Mucor hiemalis , 1980 .

[9]  G. Viniegra-González,et al.  Physiological comparison between pectinase-producing mutants of Aspergillus niger adapted either to solid-state fermentation or submerged fermentation , 1997 .

[10]  B. Kristiansen,et al.  Morphology and citric acid production of Aspergillus niger PM 1 , 1994, Biotechnology Letters.

[11]  Thomas,et al.  Applications of image analysis in cell technology. , 1996, Current opinion in biotechnology.

[12]  C. Kubicek,et al.  Influence of manganese on morphology and cell wall composition of Aspergillus niger during citric acid fermentation , 1980, Archives of Microbiology.

[13]  E. Olsvik,et al.  Correlation of Aspergillus niger broth rheological properties with biomass concentration and the shape of mycelial aggregates , 1993, Biotechnology and bioengineering.

[14]  C. Strunk Über die Substruktur der Hyphenspitzen von Polystictus versicolor , 1963 .

[15]  T. Scheper,et al.  In situ microscopy for on-line determination of biomass. , 1998, Biotechnology and bioengineering.

[16]  N. Kossen The morphology of filamentous fungi. , 2000, Advances in biochemical engineering/biotechnology.

[17]  S. Bartnicki-García 8 – Role of Vesicles in Apical Growth and a New Mathematical Model of Hyphal Morphogenesis , 1990 .

[18]  A. Bull,et al.  The physiology and metabolic control of fungal growth. , 1977, Advances in microbial physiology.

[19]  C. Strunk [On the substructure of the hyphal tips of Polystictus versicolor]. , 1963, Zeitschrift fur allgemeine Mikrobiologie.

[20]  J. C. van Suijdam,et al.  Influence of engineering variables upon the morphology of filamentous molds , 1981 .

[21]  Z. Fencl,et al.  Dependence of release of nucleotides from fungi on fermentor turbine speed , 1980 .

[22]  J. L. Reissig,et al.  Mucopolysaccharide Which Regulates Growth in Neurospora , 1971, Journal of bacteriology.

[23]  A. Nienow,et al.  Dependence of mycelial morphology on impeller type and agitation intensity , 2000, Biotechnology and bioengineering.

[24]  A. Amanullah,et al.  Dynamics of mycelial aggregation in cultures of Aspergillus oryzae , 2001 .

[25]  L. Karaffa,et al.  The biochemistry of citric acid accumulation by Aspergillus niger. , 2001, Acta microbiologica et immunologica Hungarica.

[26]  N. Matsumoto,et al.  Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S-4. , 1999, Biotechnology and bioengineering.

[27]  D B Kell,et al.  The inhibition by CO2 of the growth and metabolism of micro-organisms. , 1989, The Journal of applied bacteriology.

[28]  Hung-Chang Chen,et al.  Inoculum effects on the production of γ-linolenic acid by the shake culture of Cunninghamella echinulata CCRC 31840 , 1997 .

[29]  Y. Yoo,et al.  Analysis of broth rheology with cell morphology in Cephalosporium fermentation , 1992 .

[30]  J. Prosser Kinetics of Filamentous Growth and Branching , 1995 .

[31]  K. Vorlop,et al.  Biotechnological production of itaconic acid , 2001, Applied Microbiology and Biotechnology.

[32]  J. Trevithick,et al.  How important is secretion of exoenzymes through apical cell walls of fungi? , 2004, Archives of Microbiology.

[33]  D. E. Brown,et al.  Growth kinetics and cellulase biosynthesis in the continuous culture of Trichoderma viride , 1977, Biotechnology and bioengineering.

[34]  R. Righelato,et al.  The relationship between hyphal branching, specific growth rate and colony radial growth rate in Penicillium chrysogenum. , 1974, Journal of general microbiology.

[35]  M. Alexander,et al.  GROWTH CHARACTERISTICS OF FUNGI AND ACTINOMYCETES , 1960, Journal of bacteriology.

[36]  B. Kristiansen,et al.  The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and culture , 1999 .

[37]  Kornelia Zetelaki The role of aeration and agitation in the production of glucose oxidase in submerged culture. II , 1970, Biotechnology and bioengineering.

[38]  J. Iqbal,et al.  Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger using molasses based media , 2002 .

[39]  J. Nielsen,et al.  Role of substrate concentration in mitosis and hyphal extension of Aspergillus. , 2000, Biotechnology and bioengineering.

[40]  A P Trinci,et al.  A model for hyphal growth and branching. , 1979, Journal of general microbiology.

[41]  C. Kubicek,et al.  Phosphofructokinase as a regulatory enzyme in citric acid producing Aspergillus niger , 1979 .

[42]  H. Taguchi The nature of fermentation fluids , 1971 .

[43]  T. Yanagita,et al.  CYTOCHEMICAL AND PHYSIOLOGICAL DIFFERENTIATION OF MOLD PELLETS , 1963 .

[44]  Y. Chisti,et al.  Fermentative conversion of cellulosic substrates to microbial protein byNeurospora sitophila , 1992, Biotechnology Letters.

[45]  A. Trinci,et al.  Effect of polymeric additives, especially Junlon and Hostacerin, on growth of some basidiomycetes in submerged culture , 1988 .

[46]  C. Bracker,et al.  Protoplasmic Organization of Hyphal Tips Among Fungi: Vesicles and Spitzenkörper , 1970, Journal of bacteriology.

[47]  J. Peberdy Protein secretion in filamentous fungi--trying to understand a highly productive black box. , 1994, Trends in biotechnology.

[48]  E. Grulke,et al.  Determination of the respiration kinetics for mycelial pellets of Phanerochaete chrysosporium , 1992, Applied and environmental microbiology.

[49]  J. Prosser,et al.  Growth mechanisms and growth kinetics of filamentous microorganisms. , 1991, Critical reviews in biotechnology.

[50]  J. Nielsen,et al.  Modeling the mycelium morphology of Penicillium species in submerged cultures , 1998 .

[51]  Philip W. Cox,et al.  Improved image analysis algorithm for the characterisation of mycelial aggregates after staining , 1994 .

[52]  E. Olsvik,et al.  Influence of oxygen tension, biomass concentration, and specific growth rate on the rheological properties of a filamentous fermentation broth , 1992, Biotechnology and bioengineering.

[53]  A. Covington R. A. Robinson Memorial Lecture. Potentiometric titrations of aqueous carbonate solutions , 1985 .

[54]  R. Rosenberger,et al.  Hyphal Wall Synthesis in Aspergillus nidulans: Effect of Protein Synthesis Inhibition and Osmotic Shock on Chitin Insertion and Morphogenesis , 1971, Journal of bacteriology.

[55]  J. van den Berg,et al.  The rheology of mycelial broths , 1974 .

[56]  A. Trinci The hyphal growth unit of wild type and spreading colonial mutants of Neurospora crassa , 1973, Archiv für Mikrobiologie.

[57]  E Keshavarz-Moore,et al.  Estimation of cell volume and biomass of penicillium chrysogenum using image analysis , 1992, Biotechnology and bioengineering.

[58]  Christine Humphries,et al.  A homeostatic set point for branching in Neurospora crassa. , 2000 .

[59]  R. Lahoz,et al.  Influence of the level of the carbon source on the autolysis of Aspergillus niger. , 1970, Journal of general microbiology.

[60]  J. Hunik,et al.  Influence of Morphology on Product Formation in Aspergillusawamori during Submerged Fermentations , 1998, Biotechnology progress.

[61]  L. Nyiri,et al.  Studies on automatically aerated biosynthetic processes. I. The effect of agitation and CO2 on penicillin formation in automatically aerated liquid cultures , 1965 .

[62]  Takeshi Kobayashi,et al.  Oxygen transfer into mycelial pellets , 1966, Biotechnology and Bioengineering.

[63]  I. Maddox,et al.  The effect of the sugar source on citric acid production by Aspergillus niger , 1984, Applied Microbiology and Biotechnology.

[64]  U. Viesturs,et al.  Correlation of mixing and fermentation performance , 1996 .

[65]  Z. Fencl Comments on differentiation and product formation in molds , 1970, Biotechnology and bioengineering.

[66]  G. Gooday,et al.  Effects of nikkomycin and echinocandin on differentiated and undifferentiated mycelia of Botrytis cinerea and Mucor rouxii , 1992 .

[67]  E. Park,et al.  Mycelial pellet intrastructure and visualization of mycelia and intracellular lipid in a culture of Mortierella alpina , 2001, Applied Microbiology and Biotechnology.

[68]  A. Bull,et al.  The Effect of Oxygen Tension in the Medium on the Morphology and Growth Kinetics of Aspergillus nidulans , 1971 .

[69]  G. N. Qazi,et al.  Comparison of airlift and stirred reactors for fermentation with Aspergillus niger , 1989 .

[70]  D. Jennings,et al.  THE INFLUENCE OF CATIONS ON GLUCOSE TRANSPORT AND METABOLISM BY, AND THE LOSS OF SUGAR ALCOHOLS FROM, THE FUNGUS DENDRYPHIELLA SALINA , 1970 .

[71]  N. Kossen,et al.  The rheology of mould suspensions , 1979 .

[72]  Michael C. Flickinger,et al.  Encyclopedia of bioprocess technology : fermentation, biocatalysis, and bioseparation , 1999 .

[73]  Davies,et al.  Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum. , 2000, Biochemical engineering journal.

[74]  M. Lilly,et al.  The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum , 1990, Biotechnology and bioengineering.

[75]  M. Charles Technical aspects of the rheological properties of microbial cultures , 1978 .

[76]  S. Bartnicki-Garcia,et al.  Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth , 1989, Protoplasma.

[77]  C. Thomas,et al.  Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations , 1999 .

[78]  C. T. Calam Process Development in Antibiotic Fermentations , 1987 .

[79]  E. W. de Bruijn,et al.  Methods for quantitative representation of the morphology of molds , 1981 .

[80]  N. Kossen,et al.  Unstructured model for growth of mycelial pellets in submerged cultures , 1982, Biotechnology and bioengineering.

[81]  Campbell W. Robinson,et al.  Measurement of rheological properties of filamentous fermentation broths , 1990 .

[82]  A G Edwards,et al.  Effects of carbon dioxide on Penicillium chrysogenum: An autoradiographic study , 1988, Biotechnology and bioengineering.

[83]  S. Nokes,et al.  Submerged and Solid-State Phytase Fermentation by Aspergillus niger: Effects of Agitation and Medium Viscosity on Phytase Production, Fungal Morphology and Inoculum Performance , 2001 .

[84]  E. Chain,et al.  Aeration studies. IV. Aeration conditions in 3000‐liter submerged fermentations with various microorganisms , 1966 .

[85]  W. Bujalski,et al.  Hydrodynamic, physiological, and morphological characteristics of Fusarium moniliforme in geometrically dissimilar stirred bioreactors , 1995, Biotechnology and bioengineering.

[86]  D I Wang,et al.  Computer control of the penicillin fermentation using the filtration probe in conjunction with a structured process model , 1983, Biotechnology and bioengineering.

[87]  K. Schügerl,et al.  Strategies for penicillin fermentation in tower–loop reactors , 1982, Biotechnology and bioengineering.

[88]  I. Heath,et al.  Studies on Saprolegnia ferax suggest the general importance of the cytoplasm in determining hyphal morphology. , 1996 .

[89]  B. McNeil,et al.  pH effects on exopolysaccharide and oxalic acid production in cultures of Sclerotium glucanicum , 1995 .

[90]  R. Howard Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. , 1981, Journal of cell science.

[91]  E. Olsvik,et al.  On‐line rheological measurements and control in fungal fermentations , 1992, Biotechnology and bioengineering.

[92]  D. S. Clark Submerged citric acid fermentation of ferrocyanide-treated beet molasses: morphology of pellets of Aspergillus niger. , 1962, Canadian journal of microbiology.

[93]  D. G. Smith,et al.  A serological investigation of hyphal growth in Fusarium culmorum , 2004, Archiv für Mikrobiologie.

[94]  J. Riba,et al.  Morphology and growth of Aspergillus niger ATCC 26036 cultivated at several shear rates. , 1988, Biotechnology and bioengineering.

[95]  Jyeshtharaj B. Joshi,et al.  Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells , 1996 .

[96]  W. Wold,et al.  The citric acid fermentation by Aspergillus niger: regulation by zinc of growth and acidogenesis. , 1976, Canadian journal of microbiology.

[97]  B. Kristiansen,et al.  Hyphal vacuolation and fragmentation in batch and fed-batch culture of Aspergillus niger and its relation to citric acid production , 1999 .

[98]  G. Viniegra-González,et al.  Comparison of alternative kinetic models for estimating the specific growth rate of Gibberella fujikuroi by image analysis techniques , 1994 .

[99]  A. Clutterbuck Synchronous nuclear division and septation in Aspergillus nidulans. , 1970, Journal of general microbiology.

[100]  K Schügerl,et al.  Influence of the process parameters on the morphology and enzyme production of Aspergilli. , 1998, Advances in biochemical engineering/biotechnology.

[101]  I. Heath,et al.  Direct evidence for Ca2+ regulation of hyphal branch induction , 1997, Fungal genetics and biology : FG & B.

[102]  Christian P. Kubicek,et al.  Citric Acid Fermentation , 1985 .

[103]  U. Reichl,et al.  Characterization of pellet morphology during submerged growth of Streptomyces tendae by image analysis , 1992, Biotechnology and bioengineering.

[104]  D. Finkelstein,et al.  Biotechnology of filamentous fungi : technology and products , 1992 .

[105]  Mark R. Marten,et al.  Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. , 2000, Biotechnology and bioengineering.

[106]  S. Pirt,et al.  Melanin production by Aspergillus nidulans in batch and chemostat cultures. , 1972, Journal of general microbiology.

[107]  A. L. Koch,et al.  The kinetics of mycelial growth. , 1975, Journal of general microbiology.

[108]  D. G. Allen,et al.  The effect of particle morphology and concentration on the directly measured yield stress in filamentous suspensions , 1995, Biotechnology and bioengineering.

[109]  J. Bae,et al.  Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers , 2001, Applied Microbiology and Biotechnology.

[110]  M Carlsen,et al.  Growth and product formation of Aspergillus oryzae during submerged cultivations: verification of a morphologically structured model using fluorescent probes. , 1998, Biotechnology and bioengineering.

[111]  J. Nielsen,et al.  Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation , 2002, Applied Microbiology and Biotechnology.

[112]  A. H. Romano,et al.  Pyruvate carboxylase of Rhizopus nigricans and its role in fumaric acid production. , 1969, Biochemical and biophysical research communications.

[113]  G. C. Paul,et al.  Effect of biomass concentration and mycelial morphology on fermentation broth rheology. , 2000, Biotechnology and bioengineering.

[114]  K. Gull,et al.  Detection of areas of wall differentiation in fungi using fluorescent staining , 1974, Archives of Microbiology.

[115]  C. J. Mirocha,et al.  Growth of fungi on an inorganic medium. , 1971, Canadian journal of microbiology.

[116]  L. Nyiri,et al.  Studies on ventilation of culture broths. I. Behavior of CO2 in model systems , 1968 .

[117]  G. C. Paul,et al.  A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum , 2000, Biotechnology and bioengineering.

[118]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[119]  J. Nielsen,et al.  A Simple morphologically structured model describing the growth of filamentous microorganisms , 1993, Biotechnology and bioengineering.

[120]  Marie-Noëlle Pons,et al.  Growth Monitoring of Filamentous Microorganisms by Image Analysis , 1992 .

[121]  G. Solomons,et al.  The prediction of oxygen transfer rates in the presence of mould mycelium , 1961 .

[122]  C. Thomas,et al.  Turbulent breakage of filamentous microorganisms in submerged culture in mechanically stirred bioreactors , 1994 .

[123]  Brian McNeil,et al.  Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60 , 1997 .

[124]  M. Molina,et al.  Genetic Control of Fungal Cell Wall Autolysis , 1993 .

[125]  R. Gómez,et al.  Pellet growth and citric acid yield of Aspergillus niger 110 , 1988 .

[126]  C. Lentz,et al.  Submerged citric acid fermentation of sugar beet molasses: effect of pressure and recirculation of oxygen. , 1961, Canadian journal of microbiology.

[127]  Amanullah,et al.  Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae. , 1999, Biotechnology and bioengineering.

[128]  L. J. Alexander,et al.  NUCLEAR BEHAVIOR, SEPTATION, AND HYPHAL GROWTH OF ALTERNARIA SOLANI , 1969 .

[129]  R. H. Stover,et al.  Effect of Carbon Dioxide on Multiplication of Fusarium in Soil , 1958, Nature.

[130]  M. Moo-young,et al.  Effects of polymer additives on fermentation parameters in a culture of A. niger , 1973 .

[131]  K.-H. Bellgardt,et al.  Proces models for production of β-lactam antibiotics , 1998 .

[132]  A. Trinci Influence of the Width of the Peripheral Growth Zone on the Radial Growth Rate of Fungal Colonies on Solid Media , 1971 .

[133]  C. A. Kent,et al.  Hyphal vocuolation and fragmentation inpenicillium chrysogenum. , 1994, Biotechnology and bioengineering.

[134]  Mark R. Marten,et al.  Effects of Increased Impeller Power in a Production‐Scale Aspergillusoryzae Fermentation , 2002, Biotechnology progress.

[135]  E. Olsvik,et al.  Rheological and morphological properties of submerged citric acid fermentation broth in stirred-tank and bubble column reactors , 1993 .

[136]  S. Pirt,et al.  A kinetic study of the mode of growth of surface colonies of bacteria and fungi. , 1967, Journal of general microbiology.

[137]  E O Voit,et al.  Optimization of nonlinear biotechnological processes with linear programming: Application to citric acid production by Aspergillus niger , 2000, Biotechnology and bioengineering.

[138]  S. Reshetnikov,et al.  A stochastic model for early mycelial growth. , 1990 .

[139]  L. Harvey,et al.  Autolysis in batch cultures of Penicillium chrysogenum at varying agitation rates , 1998 .

[140]  V. W. Cochrane Physiology of Fungi , 1959 .

[141]  A. Trinci,et al.  Colony and specific growth rates of normal and mutant strains of Aspergillus nidulans , 1969 .

[142]  Christian P. Kubicek,et al.  The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger , 1989, Applied Microbiology and Biotechnology.

[143]  Lee A. Segel,et al.  Growth and metabolism in mycelial fungi , 1983 .

[144]  M. Mattey The production of organic acids. , 1992, Critical reviews in biotechnology.

[145]  G. Hyde,et al.  Ca2+Gradients in Hyphae and Branches ofSaprolegnia ferax , 1997 .

[146]  D. F. Sears,et al.  A Model Representing a Physiological Role of CO2 at the Cell Membrane , 1961, The Journal of general physiology.

[147]  B. Kristiansen,et al.  Citric acid production and morphology of Aspergillus niger as functions of the mixing intensity in a stirred tank and a tubular loop bioreactor , 1998 .

[148]  E. Gilles,et al.  Morphological characterization of filamentous microorganisms in submerged cultures by on-line digital image analysis and pattern recognition. , 1997, Biotechnology and bioengineering.

[149]  S. Pirt A theory of the mode of growth of fungi in the form of pellets in submerged culture , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[150]  S. J. Pirt,et al.  Principles of microbe and cell cultivation , 1975 .

[151]  S. Pirt,et al.  Continuous-Flow Culture of the Filamentous Mould Penicillium Chrysogenum and the Control of its Morphology , 1959, Nature.

[152]  A. Trinci,et al.  The growth unit of the mould Geotrichum candidum , 2004, Archiv für Mikrobiologie.

[153]  H. M. Tsuchiya,et al.  Differentiation and product formation in molds , 1970, Biotechnology and bioengineering.

[154]  Chester S. Ho,et al.  Effect of dissolved carbon dioxide on penicillin fermentations: Mycelial growth and penicillin production , 1986, Biotechnology and bioengineering.

[155]  E. Gilles,et al.  Mathematical model for apical growth, septation, and branching of mycelial microorganisms , 1992, Biotechnology and bioengineering.

[156]  Leah Edelstein,et al.  The propagation of fungal colonies: a model for tissue growth , 1982 .

[157]  E. L. Gaden,et al.  Effects of liquid physical properties on oxygen transfer in penicillin fermentation. , 1955, Applied microbiology.

[158]  J. Nielsen,et al.  On-line study of growth kinetics of single hyphae of Aspergillus oryzae in a flow-through cell. , 1999, Biotechnology and bioengineering.

[159]  M. Lilly,et al.  Effect of cycling dissolved oxygen concentrations on product formation in penicillin fermentations , 1982, European journal of applied microbiology and biotechnology.

[160]  B. McNeil,et al.  Effect of phenylacetic acid feeding on the process of cellular autolysis in submerged batch cultures of Penicillium chrysogenum. , 1999, Journal of biotechnology.

[161]  P. Cox,et al.  Quantification of autolysis in Penicillium chrysogenum by semiautomated image analysis. , 2001, Canadian journal of microbiology.

[162]  P. Cox,et al.  Classification and measurement of fungal pellets by automated image analysis , 1992, Biotechnology and bioengineering.

[163]  A. Geitmann,et al.  Cell Biology of Plant and Fungal Tip Growth—Getting to the Point , 2000, Plant Cell.

[164]  John G. Anderson,et al.  The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger (microcycle conidiation). , 1971, Journal of general microbiology.

[165]  Mark R. Marten,et al.  Measurements of the fragmentation rate constant imply that the tensile strength of fungal hyphae can change significantly during growth , 2004, Biotechnology Letters.

[166]  C. G. Sinclair,et al.  Production of citric acid in continuous culture , 1979 .

[167]  John G. Anderson,et al.  Changes in Carbon Catabolic Pathways during Synchronous Development of Conidiophores of Aspergillus niger , 1972 .

[168]  A P Trinci,et al.  A kinetic study of the growth of Aspergillus nidulans and other fungi. , 1969, Journal of general microbiology.

[169]  S E Vecht-Lifshitz,et al.  Pellet formation and cellular aggregation in Streptomyces tendae , 1990, Biotechnology and bioengineering.

[170]  C. A. Kent,et al.  Viability testing and characterization of germination of fungal spores by automatic image analysis , 1993, Biotechnology and bioengineering.

[171]  J. Shanahan,et al.  Effects of Carbon dioxide on the Rheological behavior and oxygen transfer in submerged penicillin fermentations , 1991, Biotechnology and bioengineering.

[172]  M. Lilly,et al.  The influence of mechanical forces on the morphology and penicillin production of Penicillium chrysogenum , 1993 .

[173]  C. R. Thomas,et al.  The use of image analysis for morphological measurements on filamentous microorganisms. , 1988, Biotechnology and bioengineering.

[174]  G. Robson,et al.  Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. , 1999, Biotechnology and bioengineering.

[175]  S. Nokes,et al.  PRODUCTION OF PHYTASE BY ASPERGILLUS NIGER IN SUBMERGED AND SOLID-STATE FERMENTATION , 1999 .

[176]  B. Kristiansen,et al.  Citric Acid Biotechnology , 1998 .

[177]  I. Heath Tip growth in plant and fungal cells , 1992 .

[178]  G. C. Paul,et al.  Characterisation of mycelial morphology using image analysis. , 1998, Advances in biochemical engineering/biotechnology.

[179]  A. Mcintosh,et al.  Influence of dilution rate on enzyme synthesis in Aspergillus niger in continuous culture. , 1974, Journal of general microbiology.

[180]  J. P. Kernevez,et al.  Determination of substrate concentrations by a computerized enzyme electrode , 1983, Biotechnology and bioengineering.

[181]  N. Torres,et al.  Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: II. Sensitivity analysis , 1994, Biotechnology and bioengineering.

[182]  Paul F. Greenfield,et al.  Effect of carbon dioxide on yeast growth and fermentation , 1982 .

[183]  N. Bagni,et al.  Magnesium and polyamine levels in Neurospora crassa mycelia. , 1971, Biochimica et biophysica acta.

[184]  J. Bae,et al.  Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production by Paecilomyces japonica in a batch bioreactor , 2001 .

[185]  A. Trinci,et al.  Effect of pH and temperature on morphology of batch and chemostat cultures of Penicillium chrysogenum , 1983 .

[186]  N. Kossen,et al.  An inoculum technique for the production of fungal pellets , 1980, European journal of applied microbiology and biotechnology.

[187]  G. Gooday An Autoradiographic Study of Hyphal Growth of Some Fungi , 1971 .

[188]  N. Torres,et al.  Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: I. Model definition and stability of the steady state , 1994, Biotechnology and bioengineering.

[189]  K. Luyben,et al.  Aspects of the use of complex media for submerged fermentation of Aspergillus awamori , 1998 .

[190]  G. Robson,et al.  Development of morphological heterogeneity in glucose-limited chemostat cultures of Aspergillus oryzae , 1994 .

[191]  K. Schügerl,et al.  The use of molds in pellet form , 1983 .

[192]  K. Schügerl,et al.  Process engineering investigations of penicillin production , 1981, European journal of applied microbiology and biotechnology.

[193]  E. Olsvik,et al.  Rheology of filamentous fermentations. , 1994, Biotechnology advances.

[194]  C. Kubicek,et al.  Regulation of citric acid production by oxygen: Effect of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger , 1980, European journal of applied microbiology and biotechnology.

[195]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[196]  C. Lentz,et al.  A standard inoculum for citric acid production in submerged culture. , 1954, Canadian journal of microbiology.

[197]  A. Trinci,et al.  Changes in constituents and ultrastructure of hyphal compartments during autolysis of glucose-starved Penicillium chrysogenum. , 1970, Journal of general microbiology.

[198]  I. Heath Integration and regulation of hyphal tip growth , 1995 .

[199]  S. Aiba,et al.  Comments on oxygen transfer within a mold pellet. , 1971, Biotechnology and bioengineering.

[200]  Pascal Formisyn,et al.  A simple staining procedure for the characterisation of Basidiomycetes pellets by image analysis , 1994 .

[201]  H. Rehm,et al.  Influence of sucrose concentration and phosphate limitation on citric acid production by immobilized cells of Aspergillus niger , 1989, Applied Microbiology and Biotechnology.

[202]  Michael K. Watters,et al.  Tests of a Cellular Model for Constant Branch Distribution in the Filamentous Fungus Neurospora crassa , 2001, Applied and Environmental Microbiology.

[203]  B. J. Macauley,et al.  Effect of carbon dioxide and the bicarbonate ion on the growth of some soil fungi , 1969 .

[204]  J. Smith,et al.  Filamentous growth of Aspergillus niger in submerged shake culture , 1969 .

[205]  G. Viniegra-González,et al.  Symmetric branching model for the kinetics of mycelial growth , 1993, Biotechnology and bioengineering.

[206]  H. Ruttloff,et al.  Influence of culture conditions on mycelial structure and polygalacturonase synthesis of Aspergillus niger , 1987, Journal of basic microbiology.

[207]  C. Kubicek,et al.  Influence of manganese on enzyme synthesis and citric acid accumulation inAspergillus niger , 1977, European journal of applied microbiology and biotechnology.

[208]  M. Bushell,et al.  Polyamine, magnesium and ribonucleic acid levels in steady-state cultures of the mould Aspergillus nidulans. , 1974, Journal of general microbiology.

[209]  A. Nienow,et al.  Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. , 2002, Biotechnology and bioengineering.

[210]  M. Moo-young,et al.  Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects , 2002 .

[211]  J. K. Gupta,et al.  Effect of sugars, hydrogen ion concentration and ammonium nitrate on the formation of citric acid by Aspergillus niger. , 1976, Acta microbiologica Academiae Scientiarum Hungaricae.

[212]  S EMERSON,et al.  THE GROWTH PHASE IN NEUROSPORA CORRESPONDING TO THE LOGARITHMIC PHASE IN UNICELLULAR ORGANISMS , 1950, Journal of bacteriology.

[213]  R. Komel,et al.  Influence of some environmental factors on Rhizopus nigricans submerged growth in the form of pellets , 2000 .

[214]  Cabral,et al.  The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. , 2000, Enzyme and microbial technology.

[215]  O. Papasouliotis,et al.  Pronounced cytoplasmic pH gradients are not required for tip growth in plant and fungal cells. , 1997, Journal of cell science.

[216]  A. Bull,et al.  Studies of fungal growth and intermediary carbon metabolism under steady and non‐steady state conditions , 1969 .

[217]  Karl Schügerl,et al.  Influence of reactor systems on the morphology of Aspergillus awamori. Application of neural network and cluster analysis for characterization of fungal morphology , 1998 .

[218]  A P Trinci,et al.  Dilution rate as a determinant of mycelial morphology in continuous culture , 1991, Biotechnology and Bioengineering.

[219]  I. A. Fatile Rheological characteristics of suspensions of Aspergilus niger: correlation of rheological parameters with microbial concentration and shape of the mycelial aggregate , 2004, Applied Microbiology and Biotechnology.

[220]  J. Nielsen,et al.  Morphology and physiology of an α‐amylase producing strain of Aspergillus oryzae during batch cultivations , 2000, Biotechnology and bioengineering.

[221]  J. Nielsen,et al.  Modelling the growth of filamentous fungi. , 1992, Advances in biochemical engineering/biotechnology.

[222]  S. Braun,et al.  Mycelial morphology and metabolite production , 1991 .

[223]  R. Rosenberger,et al.  Model for Branch Initiation in Aspergillus nidulans Based on Measurements of Growth Parameters , 1972, Journal of bacteriology.

[224]  E D Gilles,et al.  Measurement and simulation of the morphological development of filamentous microorganisms , 1992, Biotechnology and bioengineering.

[225]  R. Bentley,et al.  Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with C14-labeled substrates. , 1957, The Journal of biological chemistry.

[226]  Anthony Jf Griffiths,et al.  Branch initiation in Neurospora is influenced by events at the previous branch , 2000 .

[227]  A. Trinci Kinetics of the growth of mycelial pellets of Aspergillus nidulans , 1970, Archiv für Mikrobiologie.

[228]  C. Thomas,et al.  Mycelial morphology: The effect of spore inoculum level , 1992, Biotechnology Letters.

[229]  Yusuf Chisti,et al.  Solid Substrate Fermentations, Enzyme Production, Food Enrichment , 2002 .

[230]  J. H. Smith ON THE EARLY GROWTH RATE OF THE INDIVIDUAL FUNGUS HYPHA , 1924 .

[231]  R. K. Finn,et al.  Equations of substrate‐limited growth: The case for blackman kinetics , 1973, Biotechnology and bioengineering.

[232]  J. H. Highberger,et al.  The Necessity of Carbon Dioxide for the Growth of Bacteria, Yeasts and Molds , 1927 .

[233]  S. Pirt,et al.  Relationship Between Energy Substrate Utilization and Specific Growth Rate in Aspergillus nidulans , 1971, Journal of bacteriology.

[234]  K. Gull,et al.  Effects of griseofulvin on the mitotic cycle of the fungusBasidiobolus ranarum , 1974, Archives of Microbiology.

[235]  K. Luyben,et al.  Influence of fermentation conditions and scale on the submerged fermentation of Aspergillus awamori , 1998 .

[236]  L. Choplin,et al.  Effect of pH on the batch fermentation of pullulan from sucrose medium , 1985, Biotechnology and bioengineering.

[237]  B. McNeil,et al.  Effect of carbon dioxide on morphology and product synthesis in chemostat cultures of Aspergillus niger A60 , 1997 .

[238]  A. Cundell,et al.  Morphology and ultrastructure of a Penicillium sp. grown on n-hexadecane or peptone , 1976, Applied and environmental microbiology.

[239]  Ferda Mavituna,et al.  Biochemical engineering and biotechnology handbook , 1982 .

[240]  A. Trinci,et al.  Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. , 1976, Journal of general microbiology.

[241]  J. M. Smith,et al.  Development of somatic hyphae of Geotrichum candidum. , 1980 .

[242]  D. Ryoo,et al.  Surface thermodynamics of pellet formation in Aspergillus niger , 1999, Biotechnology Letters.

[243]  A. Radford,et al.  Chromosomal loci of Neurospora crassa. , 1982, Microbiological reviews.

[244]  W. Löffelhardt,et al.  Bacterial Growth and Lysis , 1993, Federation of European Microbiological Societies Symposium Series.

[245]  B. Atkinson,et al.  Microbial floes and flocculation in fermentation process engineering , 1976 .

[246]  A P Trinci,et al.  The influence of maintenance energy and growth rate on the metabolic activity, morphology and conidiation of Penicillium chrysogenum. , 1968, Journal of general microbiology.

[247]  Mark R. Marten,et al.  Estimation of hyphal tensile strength in production-scale Aspergillus oryzae fungal fermentations. , 2002, Biotechnology and bioengineering.

[248]  J. Monod,et al.  Recherches sur la croissance des cultures bactériennes , 1942 .

[249]  C. Kubicek,et al.  Kinetics of biomass formation and citric acid production by Aspergillus niger on pilot plant scale , 1981 .

[250]  J. Nielsen,et al.  Pellet Formation and Fragmentation in Submerged Cultures of Penicillium chrysogenum and Its Relation to Penicillin Production , 1995, Biotechnology progress.

[251]  R. Rosenberger,et al.  Temperature Sensitive Mutant of Aspergillus nidulans lacking Amino-sugars in its Cell Wall , 1969, Nature.

[252]  J. M. Smith,et al.  Development of cells and hyphae of Geotrichum candidum in chemostat and batch culture , 1979 .

[253]  M. Kessel,et al.  Synchrony of Nuclear Replication in Individual Hyphae of Aspergillus nidulans , 1967, Journal of bacteriology.

[254]  C. T. Calam,et al.  Variations in inocula and their influence on the productivity of antibiotic fermentations , 1980, Biotechnology Letters.

[255]  A. H. Stouthamer,et al.  Growth and product formation in chemostat and recycling cultures by Aspergillus niger N402 and a glucoamylase overproducing transformant, provided with multiple copies of the glaA gene. , 1993, Journal of general microbiology.

[256]  C. G. Sinclair,et al.  Effect of evaporation losses on experimental continuous culture results. , 1972, Journal of general microbiology.

[257]  H. Horitsu,et al.  Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses , 1966 .

[258]  C. R. Thomas,et al.  Morphological measurements on filamentous microorganisms by fully automatic image analysis , 1990, Biotechnology and bioengineering.

[259]  M. Mattey,et al.  The effect of manganese and magnesium ions on mitochondrial NADP+-dependent isocitrate dehydrogenase from Aspergillus niger , 1979 .

[260]  G. Hunt,et al.  Rheological characterization of a fungal fermentation for the production of pneumocandins , 2002 .

[261]  J. Nielsen,et al.  Growth and Protein Formation of Recombinant Aspergillus: Utility of Morphological Characterization by Image Analysis , 1994 .

[262]  D. Lübbers,et al.  Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements , 1986, Biotechnology and bioengineering.

[263]  A. Trinci,et al.  Morphology and growth kinetics of hyphae of differentiated and undifferentiated mycelia of Neurospora crassa. , 1975, Journal of general microbiology.

[264]  A. Trinci,et al.  Fungal walls and hyphal growth. , 1980 .

[265]  A. Friboulet,et al.  Editorial: Whither catalytic antibodies? , 1998 .

[266]  B. Kristiansen,et al.  The Filamentous fungi , 1975 .

[267]  W. A. Scott Biochemical genetics of morphogenesis in Neurospora. , 1976, Annual review of microbiology.

[268]  Y. Hadar,et al.  A model for pellet size distributions in submerged mycelial cultures , 1983 .

[269]  S. Pirt,et al.  Biochemical and structural changes in non-growing maintained and autolysing cultures of Aspergillus nidulans , 1971 .

[270]  I. Heath,et al.  Roles of calcium ions in hyphal tip growth. , 1993, Microbiological reviews.

[271]  A P Trinci,et al.  A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. , 1974, Journal of general microbiology.

[272]  D. Yu,et al.  Morphological measurements on Penicillium chrysogenum broths by rheology and filtration methods. , 1993, Biotechnology and bioengineering.

[273]  T. Wood,et al.  Xylanase production by Aspergillus awamori. Development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and β‐xylosidase while maintaining low protease production , 1991, Biotechnology and bioengineering.