A branch-and-bound algorithm based on NSGAII for multi-objective mixed integer nonlinear optimization problems

Multi-Objective Mixed-Integer Non-Linear Programming problems (MO-MINLPs) appear in several real-world applications, especially in the mechanical engineering field. To determine a good approximated Pareto front for this type of problems, we propose a general hybrid approach based on a Multi-Criteria Branch-and-Bound (MCBB) and Non-dominated Sorting Genetic Algorithm 2 (NSGAII). We present a computational experiment based on a statistical assessment to compare the performance of the proposed algorithm (BnB-NSGAII) with NSGAII using well-known metrics from literature. We propose a new metric, Investment Ratio (IR), that relate the quality of the solution to the consumed effort. We consider five real-world mechanical engineering problems and two mathematical ones to be used as test problems in this experiment. Experimental results indicate that BnB-NSGAII could be a competitive alternative for solving MO-MINLPs.

[1]  Carlos Cotta,et al.  Hybridizations of Metaheuristics With Branch & Bound Derivates , 2008, Hybrid Metaheuristics.

[2]  Nicolas Jozefowiez,et al.  The bi-objective covering tour problem , 2007, Comput. Oper. Res..

[3]  George Mavrotas,et al.  A branch and bound algorithm for mixed zero-one multiple objective linear programming , 1998, Eur. J. Oper. Res..

[4]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[5]  Kalyanmoy Deb,et al.  Mechanical Component Design for Multiple Objectives Using Elitist Non-dominated Sorting GA , 2000, PPSN.

[6]  R. Venkata Rao,et al.  Mechanical Design Optimization Using Advanced Optimization Techniques , 2012 .

[7]  Valentina Cacchiani,et al.  A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs , 2017, Eur. J. Oper. Res..

[8]  G. Kiziltan,et al.  An Algorithm for Multiobjective Zero-One Linear Programming , 1983 .

[9]  David L. Woodruff,et al.  A Chunking Based Selection Strategy for Integrating Meta-Heuristics with Branch and Bound , 1999 .

[10]  Tomoaki Tatsukawa,et al.  A Parametric Study of Crossover Operators in Pareto-Based Multiobjective Evolutionary Algorithm , 2017, ICSI.

[11]  Pascal Lafon,et al.  Optimal Design of Mechanical Components with Genetic Algorithm , 1999 .

[12]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[13]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[14]  Pascal Lafon,et al.  A Comparison of Evolutionary Algorithms for Mechanical Design Components , 2002 .

[15]  Achille Messac,et al.  A multi-objective mixed-discrete particle swarm optimization with multi-domain diversity preservation , 2015, Structural and Multidisciplinary Optimization.

[16]  Patrick Prosser,et al.  Solving Vehicle Routing Problems Using Constraint Programming and Metaheuristics , 2000, J. Heuristics.

[17]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[18]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[19]  Jean Bigeon,et al.  Performance indicators in multiobjective optimization , 2018, Eur. J. Oper. Res..

[20]  K. P. Papalexandri,et al.  A parametric optimization approach for multiobjective engineering problems involving discrete decisions , 1998 .

[21]  Carlos Cotta,et al.  Embedding Branch and Bound within Evolutionary Algorithms , 2003, Applied Intelligence.

[22]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[23]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[24]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[25]  Ming Liu,et al.  A heuristic method for two-stage hybrid flow shop with dedicated machines , 2013, Comput. Oper. Res..

[26]  Anthony Przybylski,et al.  Multi-objective branch and bound , 2017, Eur. J. Oper. Res..

[27]  Sunderesh S. Heragu,et al.  A combined branch-and-bound and genetic algorithm based approach for a flowshop scheduling problem , 1996, Ann. Oper. Res..

[28]  Xavier Gandibleux,et al.  Hybrid Metaheuristics for Multi-objective Combinatorial Optimization , 2008, Hybrid Metaheuristics.

[29]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[30]  Juhani Koski,et al.  Algorithm for Generating the Pareto Optimal Set of Multiobjective Nonlinear Mixed-Integer Optimization Problems , 2007 .

[31]  Günther R. Raidl,et al.  Solving a Real-World Glass Cutting Problem , 2004, EvoCOP.

[32]  Luís N. Vicente,et al.  Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..

[33]  Günther R. Raidl,et al.  Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification , 2005, IWINAC.

[34]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[35]  Charles Audet,et al.  Mesh adaptive direct search algorithms for mixed variable optimization , 2007, Optim. Lett..

[36]  George Mavrotas,et al.  Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms , 2010, Eur. J. Oper. Res..