향상된 코덱으로 압축된 프레임에서 고속 얼굴 검출 기법 연구

최근 얼굴 인식 기술과 하드웨어의 빠른 발전으로 인해 실시간 얼굴 검출이 가능한 다양한 어플리케이션이 제시되고 있다. 특히 네트워크의 발달과 영상 장비의 저 비용화로 IP 기반의 네트워크 감시 카메라와 얼굴 검출 기술을 이용한 스마트 감시카메라의 요구와 저장된 감시카메라의 영상에서 얼굴 검출을 할 수 있는 스마트 감시 시스템의 요구가 증대되고 있다. 그러나 대부분의 감시 시스템은 네트워크 대역폭과 저장 용량을 감소시키기 위하여 영상을 압축하고 있다. 압축된 영상을 전부 디코딩 하고 모든 프레임에서 얼굴 검출을 하는 것은 시스템 성능 요구사항을 증대시키므로 압축된 영상을 이용한 빠른 얼굴 검출기법이 요구되고 있다. 본 논문은 기존의 Haar like features와 adaboost 학습기 등의 고속화된 얼굴 검출 알고리즘과 모션정보를 이용한 프레임 저감기법을 이용하여 압축된 프레임에서 고속으로 얼굴검출을 하는 방법을 제시하고 방송 응용분야에 대해 논의 하고자 한다.