Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix

The crystal structure of monoclinic Lu2SiO5 (LSO) crystals, grown by the Czochralski method, was determined at room temperature by X-ray diffraction. The unit-cell parameters are a = 10.2550 (2), b = 6.6465 (2), c = 12.3626 (4) A, β = 102.422 (1)° in space group I2/a. The linear thermal expansion tensor was determined along the a, b, c and c* directions over the temperature range from 303.15 to 768.15 K, and the principal coefficients of the thermal expansion tensor are found to be αI = −1.0235 × 10−6 K, αII = 4.9119 × 10−6 K and αIII = 10.1105 × 10−6 K. The temperature dependence of the cell volume and monoclinic angle were also evaluated. In addition, the specific heat and the thermal diffusivity were measured over the temperature ranges from 293.15 to 673.15 K and from 303.15 to 572.45 K, respectively. As a result, the anisotropic thermal conductivity could be calculated and is reported for the first time, to the best of the authors' knowledge. The specific heat capacity of LSO is 139.54 J mol−1 K−1, and the principal components of the thermal conductivity are kI = 2.26 W m−1 K−1, kII = 3.14 W m−1 K−1 and kII = 3.67 W m−1 K−1 at 303.15 K. A new structure model was proposed to better understand the relationships between the crystal structure and anisotropic thermal properties. In comparison with other laser matrix crystals, it is found that LSO possesses relatively large anisotropic thermal properties, and owing to its small heat capacity it has a moderate thermal conductivity, which is similar to those of the tungstates but lower than those of the vanadates.

[1]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[2]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[3]  B. Ferrand,et al.  Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals , 2004 .

[4]  W. Eitel Thermochemical methods in silicate investigation , 1952 .

[5]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[6]  H. Matsumura,et al.  Crystal growth of lutetium oxyorthosilicate (LSO) by melt-supply double crucible czochralski (DC-CZ) method , 2007 .

[7]  O. Tillement,et al.  Fiber single crystal growth by LHPG technique and optical characterization of Ce3+-doped Lu2SiO5 , 2008 .

[8]  S. Sharma Thermal expansion of crystals , 1951 .

[9]  Yoann Zaouter,et al.  Efficient diode-pumped Yb 3+ :Y 2 SiO 5 and Yb 3+ :Lu 2 SiO 5 high-power femtosecond laser operation , 2006 .

[10]  N. Miyazaki,et al.  Thermal stress analysis of GSO bulk single crystal , 1997 .

[11]  Charles L. Melcher,et al.  Thermal expansion and stability of cerium-doped Lu2SiO5 , 2006 .

[12]  J. Peak,et al.  Scanning electron and cathodoluminescence imaging of thin film Lu2SiO5:Ce scintillating materials , 2007 .

[13]  E. Gopal Specific Heats at Low Temperatures , 1966 .

[14]  J. Gavaldà,et al.  Charge self-compensation in the nonlinear optical crystals Rb0.855Ti0.955Nb0.045OPO4 and RbTi0.927Nb0.056Er0.017OPO4 , 2003 .

[15]  O. Tillement,et al.  Shaped crystal growth of Ce3+-doped Lu2(1-x)Y2xSiO5 oxyorthosilicate for scintillator applications by pulling-down technique , 2006 .

[16]  M. Nastasi,et al.  Structure and optical properties of Lu 2 SiO 5 :Ce phosphor thin films , 2006 .

[17]  W. Moses,et al.  Prospects for time-of-flight PET using LSO scintillator , 1999 .

[18]  Yanchun Zhou,et al.  Thermal properties of single-phase Y2SiO5 , 2009 .

[19]  V. Petrov,et al.  Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host. , 2008, Optics express.

[20]  P. Haumesser,et al.  Spectroscopic and crystal-field analysis of new Yb-doped laser materials , 2001 .

[21]  C. Melcher,et al.  Czochralski growth of rare earth oxyorthosilicate single crystals , 1993 .

[22]  Xiufeng Cheng,et al.  Growth and characterization of the new laser crystal Nd:LuVO4 , 2004 .

[23]  T. Hahn International tables for crystallography , 2002 .

[24]  Xiufeng Cheng,et al.  Characterization of mixed Nd:LuxGd1−xVO4 laser crystals , 2007 .

[25]  J. P. van der Eerden,et al.  Science and technology of crystal growth , 1995 .

[26]  C. Brandle,et al.  Czochralski growth of rare-earth orthosilicates (Ln2SiO5) , 1986 .

[27]  Kunpeng Wang,et al.  Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals , 2005 .

[28]  Shangqian Sun,et al.  Thermal properties of a Nd:LuVO4 crystal , 2007 .

[29]  Xu Shi-Xiang,et al.  Efficient Laser-Diode End-Pumped Passively Q-Switched Mode-Locked Yb:LYSO Laser Based on SESAM , 2008 .

[30]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[31]  Bruce H. T. Chai,et al.  Crystal growth of YCa4O(BO3)3 and its orientation , 1999 .

[32]  B. Viana,et al.  Crystal field study of ytterbium doped Lu2SiO5 and Y2SiO5 under a magnetic field , 2008 .

[33]  C. Marshall,et al.  Gain saturation measurements of ytterbium-doped Sr5(PO4)3 F. , 2000, Applied optics.

[34]  F. Balembois,et al.  Generation of 90-fs pulse from a modelocked diode-pumped Yb3+:Ca4GdO(BO3)3 laser , 2018 .

[35]  L. J. Qin,et al.  Thermal conductivity and refractive indices of Nd:GdVO4 crystals , 2003 .

[36]  Daniel Vivien,et al.  A simple model for the prediction of thermal conductivity in pure and doped insulating crystals , 2003 .

[37]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[38]  Guangjun Zhao,et al.  Efficient tunable diode-pumped Yb:LYSO laser. , 2006, Optics express.

[39]  R. Zhu,et al.  Large size LYSO crystals for future high energy physics experiments , 2004, IEEE Transactions on Nuclear Science.

[40]  Patrick Georges,et al.  Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping , 2005 .

[41]  Lloyd L. Chase,et al.  Evaluation of absorption and emission properties of Yb/sup 3+/ doped crystals for laser applications , 1993 .