Formulations, predictions, and sensitivity analysis of a pyrotechnically actuated pin puller model

This article presents an analysis for pyrotechnic combustion and pin motion in the NASA Standard Initiator (NSI) actuated pin puller. The conservation principles and constitutive relations for a multiphase system are posed and reduced to a set of five ordinary differential equations which are solved to predict the system`s performance. The model tracks the interactions of the unreacted, incompressible solid pyrotechnic, incompressible condensed phase combustion products, and gas phase combustion products. Predicted pressure histories for the firing of an NSI into (1) the pin puller device, (2) a 10 cm(sup 3) closed vessel, and (3) an apparatus known as the Dynamic Test Device compare well with experimental results. A sensitivity analysis reveals large regions in parameter space where system performance is insensitive to particular parametric values; smaller regions of high sensitivity are also found. 15 refs.