Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor.

We have fabricated and tested, to the best of our knowledge, the first microfluidic device monolithically integrated with planar chalcogenide glass waveguides on a silicon substrate. High-quality Ge(23)Sb(7)S(70) glass films have been deposited onto oxide coated silicon wafers using thermal evaporation, and high-index-contrast channel waveguides have been defined using SF(6) plasma etching. Microfluidic channel patterning in photocurable resin (SU8) and channel sealing by a polydimethylsiloxane (PDMS) cover completed the device fabrication. The chalcogenide waveguides yield a transmission loss of 2.3 dB/cm at 1550 nm. We show in this letter that using this device, N-methylaniline can be detected using its well-defined absorption fingerprint of the N-H bond near 1496 nm. Our measurements indicate linear response of the sensor to varying N-methylaniline concentrations. From our experiments, a sensitivity of this sensor down to a N-methylaniline concentration 0.7 vol. % is expected. Given the low-cost fabrication process used, and robust device configuration, our integration scheme provides a promising device platform for chemical sensing applications.

[1]  N. F. de Rooij,et al.  Microfluidics meets MEMS , 2003, Proc. IEEE.

[2]  A. Ozols,et al.  Holographic recording in amorphous As2S3 films at 633 nm , 2006 .

[3]  K. Mogensen,et al.  Performance of an in‐plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices , 2002, Electrophoresis.

[4]  S. K. Chaudhuri,et al.  Full-vectorial mode calculations by finite difference method , 1994 .

[5]  Jacques Lucas,et al.  Infrared transmitting glasses and glass-ceramics , 2006 .

[6]  Joon Tae Ahn,et al.  Selenide Glass Optical Fiber Doped with Pr3+ for U‐Band Optical Amplifier , 2005 .

[7]  Lin Zhu,et al.  Integrated microfluidic variable optical attenuator. , 2005, Optics express.

[8]  Joseph Maria Kumar Irudayaraj,et al.  Planar chalcogenide glass waveguides for IR evanescent wave sensors , 2006 .

[9]  K. Mogensen,et al.  Monolithic integration of microfluidic channels and optical waveguides in silica on silicon. , 2001, Applied optics.

[10]  H.T. Nguyen,et al.  High index contrast waveguides in chalcogenide glass and polymer , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  S. Shaji,et al.  NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline--a conformational structural analysis using local mode model. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[12]  Barry Luther-Davies,et al.  Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching. , 2004, Optics express.

[13]  Vladimir Tarasov,et al.  Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing , 2007, SPIE BiOS.

[14]  Robert S. Windeler,et al.  Integrated all-fiber variable attenuator based on hybrid microstructure fiber , 2001 .

[15]  B. A. Mikhailov,et al.  Dispersion and Absorption of Liquid Water in the Infrared and Radio Regions of the Spectrum , 1969 .

[16]  Michel Couzi,et al.  Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S , 2006 .

[17]  Tigran Galstian,et al.  Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses , 1999 .

[18]  Rajeev Ahuja,et al.  Structure of phase change materials for data storage. , 2006, Physical review letters.

[19]  J. Rogers Tunable microfluidic optical fiber , 2002, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[20]  Oleg M. Efimov,et al.  Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses , 2001 .

[21]  Christos Riziotis,et al.  Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification , 2002 .