Excess circulating lipids increase total intramyocellular (IMC) lipid content and ectopic fat storage resulting in lipotoxicity and insulin resistance in skeletal muscle. Consumption of a diet high in fat and refined sugars, a Western Diet (WD), has been shown to activate mineralocorticoid receptors (MRs) and promote insulin resistance. However, our understanding of the precise mechanisms by which enhanced MR activation promotes skeletal muscle insulin resistance remains unclear. In this study we investigated the mechanisms by which enhanced MR signaling in soleus muscle promotes ectopic skeletal muscle lipid accumulation and related insulin resistance. Six week-old C57BL6J mice were fed either a mouse chow diet or a WD with or without spironolactone (1 mg/kg/day) for 16 weeks. Spironolactone attenuated 16 weeks of WD - induced in vivo glucose intolerance and insulin resistance, and improved soleus insulin metabolic signaling. Improved insulin sensitivity was accompanied by increased Glut-4 expression in conjunction with decreased soleus free fatty acid and IMC lipid content, as well as CD36 expression. Additionally, spironolactone prevented WD - induced soleus mitochondria dysfunction. Furthermore, MR signaling also mediated WD/aldosterone-induced reductions in soleus microRNA (miR)-99a, which was identified to negatively target CD36 and prevented palmitic acid - induced increases in CD36 expression, lipid droplet formation, mitochondria dysfunction, and insulin resistance in C2C12 cells. These data indicate that inhibition of MR activation with spironolactone prevented diet - induced abnormal expression of miR-99a, which had the capacity to reduce CD36, leading to reduced IMC lipid content, improved soleus mitochondria function and insulin sensitivity.