Multiprocessing of Combinatorial Search Problems

This chapter presents three paradigms of representations for combinatorial search problems. Depending on the functions of the nonterminal nodes in the graphical representation, a search problem can be represented as an AND-tree, an OR-tree, and an AND/OR graph. This classification facilitates the design of unique computer architectures for supporting efficient evaluation of combinatorial search problems. For each representation, we develop theoretical bounds, efficient algorithms, and functional requirements of multiprocessing architectures, and illustrate these results by examples.

[1]  Sartaj Sahni,et al.  Anomalies in Parallel Branch-and-Bound Algorithms , 1984 .

[2]  Manfred K. Warmuth,et al.  Profile Scheduling of Opposing Forests and Level Orders , 1985 .

[3]  Benjamin W. Wah,et al.  MANIP—A Multicomputer Architecture for Solving Combinatonal Extremum-Search Problems , 1984, IEEE Transactions on Computers.

[4]  Alberto Martelli,et al.  Dynamic Programming as Graph Searching: An Algebraic Approach , 1981, JACM.

[5]  Yuji Matsumoto,et al.  Prolog Interpreter Based on Concurrent Programming , 1982, ICLP.

[6]  Selim G. Akl,et al.  Design, Analysis, and Implementation of a Parallel Tree Search Algorithm , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  M. T. Kaufman,et al.  An Almost-Optimal Algorithm for the Assembly Line Scheduling Problem , 1974, IEEE Transactions on Computers.

[8]  Oliver Vornberger,et al.  Implementing Branch-and-Bound in a Ring of Processors , 1986, CONPAR.

[9]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[10]  Chee Fen Yu Efficient combinatorial search algorithms , 1986 .

[11]  Benjamin W. Wah,et al.  Stochastic Modeling of Branch-and-Bound Algorithms with Best-First Search , 1985, IEEE Transactions on Software Engineering.

[12]  Alberto Martelli,et al.  Additive AND/OR Graphs , 1973, IJCAI.

[13]  David S. Johnson,et al.  Scheduling Tasks with Nonuniform Deadlines on Two Processors , 1976, J. ACM.

[14]  Benjamin W. Wah,et al.  A Partitioning Approach to the Design of Selection Networks , 1984, IEEE Transactions on Computers.

[15]  Benjamin W. Wah,et al.  Optimal Granularity of Parallel Evaluation of AND Trees , 1986, FJCC.

[16]  George C. Stockman,et al.  A Minimax Algorithm Better than Alpha-Beta? , 1979, Artif. Intell..

[17]  H. T. Kung,et al.  Direct VLSI Implementation of Combinatorial Algorithms , 1979 .

[18]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[19]  Gerard Maurice Baudet,et al.  The design and analysis of algorithms for asynchronous multiprocessors. , 1978 .

[20]  Wing H. Huen,et al.  Distributed Enumeration on Between Computers , 1980, IEEE Transactions on Computers.

[21]  David S. Johnson,et al.  Scheduling Opposing Forests , 1983 .

[22]  I. V. Ramakrishnan,et al.  Dynamic Programming and Transitive Closure on Linear Pipelines. , 1984 .

[23]  Robert A. Kowalski,et al.  Logic for problem solving , 1982, The computer science library : Artificial intelligence series.

[24]  Alan Shaw,et al.  The logical design of operating systems , 1987 .

[25]  T. C. Hu Parallel Sequencing and Assembly Line Problems , 1961 .

[26]  Seif Haridi,et al.  Execution of Bagof on the Or-Parallel Token Machine , 1984, FGCS.

[27]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[28]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[30]  Doug DeGroot,et al.  Restricted AND-Parallelism , 1984, FGCS.

[31]  Jack B. Dennis,et al.  Data Flow Supercomputers , 1980, Computer.

[32]  David R. Smith,et al.  Simulation experiments of a tree organized multicomputer , 1979, ISCA '79.

[33]  Gyula A. Magó,et al.  Making Parallel Computations Simple: The FFP Machine , 1985, COMPCON.

[34]  R. J. Beynon,et al.  Computers , 1985, Comput. Appl. Biosci..

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  P. B. Coaker,et al.  Applied Dynamic Programming , 1964 .

[37]  Ellis Horowitz,et al.  Divide-and-Conquer for Parallel Processing , 1983, IEEE Transactions on Computers.

[38]  Benjamin W. Wah,et al.  The status of manip - a multicomputer architecture for solving, combinatorial extremum-search problems , 1984, ISCA '84.

[39]  Errol L. Lloyd,et al.  Critical Path Scheduling with Resource and Processor Constraints , 1982, JACM.

[40]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[41]  F. Warren Burton,et al.  Virtual Tree Machines , 1984, IEEE Transactions on Computers.

[42]  David J. Kuck,et al.  A Survey of Parallel Machine Organization and Programming , 1977, CSUR.

[43]  Manfred Kunde,et al.  Nonpreemptive LP-Scheduling on Homogeneous Multiprocessor Systems , 1981, SIAM J. Comput..

[44]  Ellis Horowitz,et al.  Fundamentals of Computer Algorithms , 1978 .

[45]  Vipin Kumar,et al.  Parallel Branch-and-Bound Formulations for AND/OR Tree Search , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Benjamin W. Wah,et al.  How to Cope With Anomalies in Parallel Approximate Branch-and-Bound Algorithms , 1984, AAAI.

[47]  John P. Fishburn,et al.  Parallelism in Alpha-Beta Search , 1982, Artif. Intell..

[48]  John W. Backus,et al.  Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs , 1978, CACM.

[49]  T. Anthony Marsland,et al.  Parallel Search of Strongly Ordered Game Trees , 1982, CSUR.

[50]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[51]  Edward G. Coffman,et al.  Preemptive Scheduling of Real-Time Tasks on Multiprocessor Systems , 1970, JACM.

[52]  Benjamin W. Wah,et al.  Coping with Anomalies in Parallel Branch-and-Bound Algorithms , 1986, IEEE Transactions on Computers.

[53]  Jeffrey D. Ullman,et al.  NP-Complete Scheduling Problems , 1975, J. Comput. Syst. Sci..

[54]  Toshihide Ibaraki,et al.  Computational Efficiency of Approximate Branch-and-Bound Algorithms , 1976, Math. Oper. Res..

[55]  Prakash Panangaden,et al.  Stream-Based Execution of Logic Programming , 1984, SLP.

[56]  Frans J. Peters,et al.  Tree machines and divide-and-conquer algorithms , 1981, CONPAR.

[57]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[58]  Vipin Kumar,et al.  A General Branch and Bound Formulation for Understanding and Synthesizing And/Or Tree Search Procedures , 1983, Artif. Intell..