Perturbative quasinormal mode frequencies

We often encounter a situation that black hole solutions can be regarded as continuous deformations of simpler ones, or modify general relativity by continuous parameters. We develop a general framework to compute high-order perturbative corrections to quasinormal mode frequencies in such deformed problems. Our method has many applications, and allows to compute numerical values of the high-order corrections very accurately. For several examples, we perform this computation explicitly, and discuss analytic properties of the quasinormal mode frequencies for deformation parameters.

[1]  P. Arnaudo,et al.  Black hole perturbation theory and multiple polylogarithms , 2023, 2307.10141.

[2]  T. Hertog,et al.  Quasinormal modes of rotating black holes in higher-derivative gravity , 2023, 2307.07431.

[3]  S. Volkel,et al.  Testing General Relativity with Black Hole Quasi-Normal Modes , 2023, 2305.01696.

[4]  S. Mukohyama,et al.  Quasinormal modes from EFT of black hole perturbations with timelike scalar profile , 2023, Journal of Cosmology and Astroparticle Physics.

[5]  T. Hertog,et al.  Universal Teukolsky equations and black hole perturbations in higher-derivative gravity , 2023, Physical Review D.

[6]  S. Volkel,et al.  Quasinormal modes of nonseparable perturbation equations: The scalar non-Kerr case , 2023, Physical Review D.

[7]  J. Noller,et al.  Testing the speed of gravity with black hole ringdowns , 2023, Physical Review D.

[8]  S. Volkel,et al.  Parametrized quasinormal mode framework for non-Schwarzschild metrics , 2022, Physical Review D.

[9]  L. Hui,et al.  An analytic approach to quasinormal modes for coupled linear systems , 2022, Journal of High Energy Physics.

[10]  E. Berti,et al.  Constraining modifications of black hole perturbation potentials near the light ring with quasinormal modes , 2022, Physical Review D.

[11]  L. Pierini,et al.  Quasinormal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: The second order in rotation , 2022, Physical Review D.

[12]  Yanbei Chen,et al.  Perturbations of Spinning Black Holes beyond General Relativity: Modified Teukolsky Equation , 2022, Physical Review X.

[13]  S. Volkel,et al.  Theory-agnostic reconstruction of potential and couplings from quasinormal modes , 2022, 2202.08655.

[14]  M. Kimura,et al.  Spectral Problems for Quasinormal Modes of Black Holes , 2021, Universe.

[15]  Daisuke Yoshida,et al.  Quasinormal modes of charged black holes with corrections from nonlinear electrodynamics , 2021, Physical Review D.

[16]  T. Hertog,et al.  Gravitational ringing of rotating black holes in higher-derivative gravity , 2021, Physical Review D.

[17]  Yanbei Chen,et al.  Analytical computation of quasinormal modes of slowly rotating black holes in dynamical Chern-Simons gravity , 2021, Physical Review D.

[18]  N. Yunes,et al.  Quasinormal modes of slowly-rotating black holes in dynamical Chern-Simons gravity , 2021, Physical Review D.

[19]  L. Pierini,et al.  Quasinormal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: The first order in rotation , 2021, Physical Review D.

[20]  Yasuyuki Hatsuda,et al.  An alternative to the Teukolsky equation , 2020, General Relativity and Gravitation.

[21]  M. Kimura,et al.  Semi-analytic expressions for quasinormal modes of slowly rotating Kerr black holes , 2020, 2006.15496.

[22]  Yasuyuki Hatsuda Quasinormal modes of Kerr–de Sitter black holes via the Heun function , 2020, Classical and Quantum Gravity.

[23]  J. Francfort,et al.  Black hole gravitational waves in the effective field theory of gravity , 2020, Physical Review D.

[24]  T. Hertog,et al.  Ringing of rotating black holes in higher-derivative gravity , 2020, 2005.03671.

[25]  M. Kimura Note on the parametrized black hole quasinormal ringdown formalism , 2020, Physical Review D.

[26]  M. Reece,et al.  Quasinormal modes of charged fields in Reissner-Nordström backgrounds by Borel-Padé summation of Bender-Wu series , 2019, 1912.05553.

[27]  O. Tattersall Quasi-normal modes of hairy scalar tensor black holes: odd parity , 2019, Classical and Quantum Gravity.

[28]  J. Matyjasek,et al.  Quasinormal modes of black holes. II. Padé summation of the higher-order WKB terms , 2019, Physical Review D.

[29]  Yasuyuki Hatsuda Quasinormal modes of black holes and Borel summation , 2019, Physical Review D.

[30]  E. Berti,et al.  Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes , 2019, Physical Review D.

[31]  R. Konoplya,et al.  Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations , 2019, Classical and Quantum Gravity.

[32]  E. Berti,et al.  Parametrized black hole quasinormal ringdown: Decoupled equations for nonrotating black holes , 2019, Physical Review D.

[33]  L. Senatore,et al.  Black Holes in an Effective Field Theory Extension of General Relativity. , 2018, Physical review letters.

[34]  Aron Jansen Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes , 2017, The European Physical Journal Plus.

[35]  J. Matyjasek,et al.  Quasinormal modes of black holes: The improved semianalytic approach , 2017, 1704.00361.

[36]  Tin Sulejmanpasic,et al.  Aspects of perturbation theory in quantum mechanics: The BenderWuMathematica® package , 2016, Comput. Phys. Commun..

[37]  E. Berti,et al.  Quasinormal ringing of Kerr black holes. II. Excitation by particles falling radially with arbitrary energy , 2013, 1305.4306.

[38]  R. Konoplya,et al.  Quasinormal modes of black holes: From astrophysics to string theory , 2011, 1102.4014.

[39]  V. Cardoso,et al.  Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity , 2010, 1004.4007.

[40]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[41]  L. Gualtieri,et al.  Quasi-normal modes and gravitational wave astronomy , 2007, 0709.0657.

[42]  E. Berti,et al.  Erratum: Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions [Phys. Rev. D 73, 024013 (2006)] , 2006 .

[43]  E. Berti,et al.  Quasinormal ringing of Kerr black holes: The excitation factors , 2006, gr-qc/0605118.

[44]  E. Berti,et al.  Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions , 2005, gr-qc/0511111.

[45]  M. Sakagami,et al.  Massive quasi-normal mode , 2004, gr-qc/0407009.

[46]  A. Zhidenko Quasi-normal modes of Schwarzschild-de Sitter black holes , 2003, gr-qc/0307012.

[47]  V. Cardoso,et al.  Quasinormal modes of Schwarzschild anti-de Sitter black holes: Electromagnetic and gravitational perturbations , 2001 .

[48]  H. Nollert Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .

[49]  K. Young,et al.  Perturbative approach to the quasinormal modes of dirty black holes , 1999, gr-qc/9903032.

[50]  K. Young,et al.  Logarithmic perturbation theory for quasinormal modes , 1997, physics/9712037.

[51]  K. Young,et al.  Quasinormal Modes of Dirty Black Holes , 1997, gr-qc/9903031.

[52]  N. Andersson Evolving test fields in a black-hole geometry , 1996, gr-qc/9607064.

[53]  Ishihara,et al.  Quasinormal modes of maximally charged black holes. , 1996, Physical review. D, Particles and fields.

[54]  Andersson Excitation of Schwarzschild black-hole quasinormal modes. , 1995, Physical review. D, Particles and fields.

[55]  Schmidt,et al.  Quasinormal modes of Schwarzschild black holes: Defined and calculated via Laplace transformation. , 1992, Physical review. D, Particles and fields.

[56]  M. Sasaki,et al.  Gravitational radiation from an extreme Kerr black hole , 1990 .

[57]  N. Panchapakesan,et al.  Quasi-normal modes of a black hole , 1987 .

[58]  Leaver,et al.  Spectral decomposition of the perturbation response of the Schwarzschild geometry. , 1986, Physical review. D, Particles and fields.

[59]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[60]  B. Schutz,et al.  Black hole normal modes - A semianalytic approach , 1985 .

[61]  V. Ferrari,et al.  New approach to the quasinormal modes of a black hole , 1984 .

[62]  V. Ferrari,et al.  Oscillations of a Black Hole , 1984 .

[63]  B. Mashhoon,et al.  Quasi-normal oscillations of a schwarzschild black hole , 1984 .

[64]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[65]  S. Chandrasekhar,et al.  The quasi-normal modes of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[66]  O Sarbach,et al.  On the linear stability of solitons and hairy black holes with a negative cosmological constant: the odd-parity sector , 2001 .

[67]  小野沢庸 On the Quasinormal Modes of Black Holes(ブラックホールの準固有振動について) , 1997 .

[68]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[69]  Carl M. Bender,et al.  Anharmonic oscillator , 1973 .

[70]  S. Teukolsky ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .