Perturbative quasinormal mode frequencies
暂无分享,去创建一个
[1] P. Arnaudo,et al. Black hole perturbation theory and multiple polylogarithms , 2023, 2307.10141.
[2] T. Hertog,et al. Quasinormal modes of rotating black holes in higher-derivative gravity , 2023, 2307.07431.
[3] S. Volkel,et al. Testing General Relativity with Black Hole Quasi-Normal Modes , 2023, 2305.01696.
[4] S. Mukohyama,et al. Quasinormal modes from EFT of black hole perturbations with timelike scalar profile , 2023, Journal of Cosmology and Astroparticle Physics.
[5] T. Hertog,et al. Universal Teukolsky equations and black hole perturbations in higher-derivative gravity , 2023, Physical Review D.
[6] S. Volkel,et al. Quasinormal modes of nonseparable perturbation equations: The scalar non-Kerr case , 2023, Physical Review D.
[7] J. Noller,et al. Testing the speed of gravity with black hole ringdowns , 2023, Physical Review D.
[8] S. Volkel,et al. Parametrized quasinormal mode framework for non-Schwarzschild metrics , 2022, Physical Review D.
[9] L. Hui,et al. An analytic approach to quasinormal modes for coupled linear systems , 2022, Journal of High Energy Physics.
[10] E. Berti,et al. Constraining modifications of black hole perturbation potentials near the light ring with quasinormal modes , 2022, Physical Review D.
[11] L. Pierini,et al. Quasinormal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: The second order in rotation , 2022, Physical Review D.
[12] Yanbei Chen,et al. Perturbations of Spinning Black Holes beyond General Relativity: Modified Teukolsky Equation , 2022, Physical Review X.
[13] S. Volkel,et al. Theory-agnostic reconstruction of potential and couplings from quasinormal modes , 2022, 2202.08655.
[14] M. Kimura,et al. Spectral Problems for Quasinormal Modes of Black Holes , 2021, Universe.
[15] Daisuke Yoshida,et al. Quasinormal modes of charged black holes with corrections from nonlinear electrodynamics , 2021, Physical Review D.
[16] T. Hertog,et al. Gravitational ringing of rotating black holes in higher-derivative gravity , 2021, Physical Review D.
[17] Yanbei Chen,et al. Analytical computation of quasinormal modes of slowly rotating black holes in dynamical Chern-Simons gravity , 2021, Physical Review D.
[18] N. Yunes,et al. Quasinormal modes of slowly-rotating black holes in dynamical Chern-Simons gravity , 2021, Physical Review D.
[19] L. Pierini,et al. Quasinormal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: The first order in rotation , 2021, Physical Review D.
[20] Yasuyuki Hatsuda,et al. An alternative to the Teukolsky equation , 2020, General Relativity and Gravitation.
[21] M. Kimura,et al. Semi-analytic expressions for quasinormal modes of slowly rotating Kerr black holes , 2020, 2006.15496.
[22] Yasuyuki Hatsuda. Quasinormal modes of Kerr–de Sitter black holes via the Heun function , 2020, Classical and Quantum Gravity.
[23] J. Francfort,et al. Black hole gravitational waves in the effective field theory of gravity , 2020, Physical Review D.
[24] T. Hertog,et al. Ringing of rotating black holes in higher-derivative gravity , 2020, 2005.03671.
[25] M. Kimura. Note on the parametrized black hole quasinormal ringdown formalism , 2020, Physical Review D.
[26] M. Reece,et al. Quasinormal modes of charged fields in Reissner-Nordström backgrounds by Borel-Padé summation of Bender-Wu series , 2019, 1912.05553.
[27] O. Tattersall. Quasi-normal modes of hairy scalar tensor black holes: odd parity , 2019, Classical and Quantum Gravity.
[28] J. Matyjasek,et al. Quasinormal modes of black holes. II. Padé summation of the higher-order WKB terms , 2019, Physical Review D.
[29] Yasuyuki Hatsuda. Quasinormal modes of black holes and Borel summation , 2019, Physical Review D.
[30] E. Berti,et al. Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes , 2019, Physical Review D.
[31] R. Konoplya,et al. Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations , 2019, Classical and Quantum Gravity.
[32] E. Berti,et al. Parametrized black hole quasinormal ringdown: Decoupled equations for nonrotating black holes , 2019, Physical Review D.
[33] L. Senatore,et al. Black Holes in an Effective Field Theory Extension of General Relativity. , 2018, Physical review letters.
[34] Aron Jansen. Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes , 2017, The European Physical Journal Plus.
[35] J. Matyjasek,et al. Quasinormal modes of black holes: The improved semianalytic approach , 2017, 1704.00361.
[36] Tin Sulejmanpasic,et al. Aspects of perturbation theory in quantum mechanics: The BenderWuMathematica® package , 2016, Comput. Phys. Commun..
[37] E. Berti,et al. Quasinormal ringing of Kerr black holes. II. Excitation by particles falling radially with arbitrary energy , 2013, 1305.4306.
[38] R. Konoplya,et al. Quasinormal modes of black holes: From astrophysics to string theory , 2011, 1102.4014.
[39] V. Cardoso,et al. Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity , 2010, 1004.4007.
[40] Vitor Cardoso,et al. Quasinormal modes of black holes and black branes , 2009, 0905.2975.
[41] L. Gualtieri,et al. Quasi-normal modes and gravitational wave astronomy , 2007, 0709.0657.
[42] E. Berti,et al. Erratum: Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions [Phys. Rev. D 73, 024013 (2006)] , 2006 .
[43] E. Berti,et al. Quasinormal ringing of Kerr black holes: The excitation factors , 2006, gr-qc/0605118.
[44] E. Berti,et al. Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions , 2005, gr-qc/0511111.
[45] M. Sakagami,et al. Massive quasi-normal mode , 2004, gr-qc/0407009.
[46] A. Zhidenko. Quasi-normal modes of Schwarzschild-de Sitter black holes , 2003, gr-qc/0307012.
[47] V. Cardoso,et al. Quasinormal modes of Schwarzschild anti-de Sitter black holes: Electromagnetic and gravitational perturbations , 2001 .
[48] H. Nollert. Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .
[49] K. Young,et al. Perturbative approach to the quasinormal modes of dirty black holes , 1999, gr-qc/9903032.
[50] K. Young,et al. Logarithmic perturbation theory for quasinormal modes , 1997, physics/9712037.
[51] K. Young,et al. Quasinormal Modes of Dirty Black Holes , 1997, gr-qc/9903031.
[52] N. Andersson. Evolving test fields in a black-hole geometry , 1996, gr-qc/9607064.
[53] Ishihara,et al. Quasinormal modes of maximally charged black holes. , 1996, Physical review. D, Particles and fields.
[54] Andersson. Excitation of Schwarzschild black-hole quasinormal modes. , 1995, Physical review. D, Particles and fields.
[55] Schmidt,et al. Quasinormal modes of Schwarzschild black holes: Defined and calculated via Laplace transformation. , 1992, Physical review. D, Particles and fields.
[56] M. Sasaki,et al. Gravitational radiation from an extreme Kerr black hole , 1990 .
[57] N. Panchapakesan,et al. Quasi-normal modes of a black hole , 1987 .
[58] Leaver,et al. Spectral decomposition of the perturbation response of the Schwarzschild geometry. , 1986, Physical review. D, Particles and fields.
[59] E. W. Leaver,et al. An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[60] B. Schutz,et al. Black hole normal modes - A semianalytic approach , 1985 .
[61] V. Ferrari,et al. New approach to the quasinormal modes of a black hole , 1984 .
[62] V. Ferrari,et al. Oscillations of a Black Hole , 1984 .
[63] B. Mashhoon,et al. Quasi-normal oscillations of a schwarzschild black hole , 1984 .
[64] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[65] S. Chandrasekhar,et al. The quasi-normal modes of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[66] O Sarbach,et al. On the linear stability of solitons and hairy black holes with a negative cosmological constant: the odd-parity sector , 2001 .
[67] 小野沢庸. On the Quasinormal Modes of Black Holes(ブラックホールの準固有振動について) , 1997 .
[68] Ken-ichi Oohara,et al. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .
[69] Carl M. Bender,et al. Anharmonic oscillator , 1973 .
[70] S. Teukolsky. ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .