Three-qubit entanglement generation of quantum states dissipating into a common environment

In this paper, we investigate the dynamics of entanglement of three-qubit states of a system dissipating into a common environment. By using the tripartite negativity as entanglement measure, our results imply that the three-qubit entanglement can be generated among the three qubits which have no interaction with each other, but interact with the common environment independently. From our analysis, we find that the three-qubit entanglement increases from zero to a stable value which varies with the size of the system with the increasing of the scaled time. Additionally, the extension of the entanglement generation to an arbitrary size of a subsystem is made and some discussion is given.

[1]  S. Fei,et al.  Identification of three-qubit entanglement , 2013, 1301.4317.

[2]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[3]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[4]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[5]  C. Rodó Quantum Information with Continuous Variable systems , 2010, 1005.4694.

[6]  C. Schwemmer,et al.  Experimental Schmidt decomposition and state independent entanglement detection. , 2011, Physical review letters.

[7]  F. Illuminati,et al.  Entanglement replication in driven dissipative many-body systems. , 2012, Physical review letters.

[8]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[9]  Environment-assisted entanglement enhancement , 2006, quant-ph/0607078.

[10]  G. Giorgi Monogamy properties of quantum and classical correlations , 2011, 1109.1696.

[11]  Stefano Mancini,et al.  Towards feedback control of entanglement , 2005 .

[12]  G. Long,et al.  High-dimensional quantum state transfer through a quantum spin chain , 2013, 1304.7060.

[13]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[14]  M B Plenio,et al.  Entangled light from white noise. , 2002, Physical review letters.

[15]  Stefano Mancini,et al.  Stationary entanglement achievable by environment-induced chain links , 2010, 1012.2656.

[16]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[17]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[18]  Entanglement in a time-dependent coupled XY spin chain in an external magnetic field , 2010, 1009.0648.

[19]  Dieter Meschede,et al.  Bayesian feedback control of a two-atom spin-state in an atom-cavity system. , 2012, Physical review letters.

[20]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[21]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[22]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[23]  Stefano Mancini,et al.  Stationary and uniform entanglement distribution in qubit networks with quasi-local dissipation , 2012, 1203.0993.

[24]  I S Oliveira,et al.  Measuring bipartite quantum correlations of an unknown state. , 2013, Physical review letters.

[25]  Stefano Mancini,et al.  Entanglement dynamics for qubits dissipating into a common environment , 2012, 1210.5340.

[26]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[27]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[28]  Huai-Xin Lu,et al.  Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger-Horne-Zeilinger states , 2011 .

[29]  C. Sabín,et al.  A classification of entanglement in three-qubit systems , 2007, 0707.1780.

[30]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[31]  M. Gu,et al.  Unconditional preparation of entanglement between atoms in cascaded optical cavities. , 2003, Physical review letters.

[32]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[33]  W. Dur,et al.  Steady-state entanglement in open and noisy quantum systems , 2006 .

[34]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[35]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[36]  J. Cardy,et al.  Entanglement negativity in quantum field theory. , 2012, Physical review letters.

[37]  S. Huelga,et al.  Non-Markovianity-assisted steady state entanglement. , 2011, Physical review letters.

[38]  F. Illuminati,et al.  Monogamy inequality for distributed gaussian entanglement. , 2006, Physical review letters.

[39]  P. Loock,et al.  Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement , 2011, 1111.0478.

[40]  J. Siewert,et al.  Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states. , 2012, Physical review letters.

[41]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[42]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[43]  Stefano Mancini,et al.  Steady-state entanglement between hybrid light-matter qubits , 2007, 0711.1830.

[44]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[45]  L. Vandersypen,et al.  Generating entanglement and squeezed states of nuclear spins in quantum dots. , 2011, Physical review letters.

[46]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[47]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.