Impulse Fluid Simulation

We propose a new incompressible NavierStokes solver based on the impulse gauge transformation. The mathematical model of our approach draws from the impulsevelocity formulation of NavierStokes equations, which evolves the fluid impulse as an auxiliary variable of the system that can be projected to obtain the incompressible flow velocities at the end of each time step. We solve the impulse-form equations numerically on a Cartesian grid. At the heart of our simulation algorithm is a novel model to treat the impulse stretching and a harmonic boundary treatment to incorporate the surface tension effects accurately. We also build an impulse PIC/FLIP solver to support free-surface fluid simulation. Our impulse solver can naturally produce rich vortical flow details without artificial enhancements. We showcase this feature by using our solver to facilitate a wide range of fluid simulation tasks including smoke, liquid, and surface-tension flow. In addition, we discuss a convenient mechanism in our framework to control the scale and strength of the fluids turbulent effects.

[1]  S. Xiong,et al.  Clebsch gauge fluid , 2021, ACM Transactions on Graphics.

[2]  Xuchen Han,et al.  A Hybrid Lagrangian/Eulerian Collocated Advection and Projection Method for Fluid Simulation , 2020, arXiv.org.

[3]  Peter Schröder,et al.  On bubble rings and ink chandeliers , 2019, ACM Trans. Graph..

[4]  Chenfanfu Jiang,et al.  Efficient and conservative fluids using bidirectional mapping , 2019, ACM Trans. Graph..

[5]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[6]  Robert Saye,et al.  Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I , 2017, J. Comput. Phys..

[7]  Peter Schröder,et al.  Schrödinger's smoke , 2016, ACM Trans. Graph..

[8]  R. Saye Interfacial gauge methods for incompressible fluid dynamics , 2016, Science Advances.

[9]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[10]  Robert Bridson,et al.  Restoring the missing vorticity in advection-projection fluid solvers , 2015, ACM Trans. Graph..

[11]  Robert Bridson,et al.  Linear-time smoke animation with vortex sheet meshes , 2012, SCA '12.

[12]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[13]  Robert Bridson,et al.  MultiFLIP for energetic two-phase fluid simulation , 2012, TOGS.

[14]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[15]  Hyeong-Seok Ko,et al.  Stretching and wiggling liquids , 2009, ACM Trans. Graph..

[16]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..

[17]  Mark J. Stock,et al.  Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method , 2008, J. Comput. Phys..

[18]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[19]  Diego Rossinelli,et al.  Flow simulations using particles: bridging computer graphics and CFD , 2008, SIGGRAPH '08.

[20]  Markus H. Gross,et al.  Wavelet turbulence for fluid simulation , 2008, ACM Trans. Graph..

[21]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[22]  Robert Bridson,et al.  Curl-noise for procedural fluid flow , 2007, ACM Trans. Graph..

[23]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.

[24]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[25]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[26]  Fabrice Neyret,et al.  Simulation of smoke based on vortex filament primitives , 2005, SCA '05.

[27]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[28]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[29]  Yu-Xin Ren,et al.  A class of fully second order accurate projection methods for solving the incompressible Navier-Stokes equations , 2004 .

[30]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[31]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[32]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[33]  Ricardo Cortez,et al.  A Vortex/Impulse Method for Immersed Boundary Motion in High Reynolds Number Flows , 2000 .

[34]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[35]  D. Summers A Representation of Bounded Viscous Flow Based on Hodge Decomposition of Wall Impulse , 2000 .

[36]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[37]  Ricardo Cortez,et al.  On the Accuracy of Impulse Methods for Fluid Flow , 1998, SIAM J. Sci. Comput..

[38]  E Weinan,et al.  Finite Difference Schemes for Incompressible Flows in the Velocity-Impulse Density Formulation , 1997 .

[39]  A. Chorin,et al.  Numerical vorticity creation based on impulse conservation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Cortez An Impulse-Based Approximation of Fluid Motion due to Boundary Forces , 1996 .

[41]  R. Cortez Impulse-Based Particle Methods for Fluid Flow , 1995 .

[42]  Robert L. Pego,et al.  An unconstrained Hamiltonian formulation for incompressible fluid flow , 1995 .

[43]  Manuel N. Gamito,et al.  Two-dimensional simulation of gaseous phenomena using vortex particles , 1995 .

[44]  Alexandre J. Chorin,et al.  Turbulence calculations in magnetization variables , 1993 .

[45]  Tomas F. Buttke,et al.  Velicity methods: Lagrangian numerical methods which preserve the Hamiltonian structure of incompres , 1993 .

[46]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[47]  P. Moin,et al.  Evolution of a curved vortex filament into a vortex ring , 1986 .

[48]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[49]  G. A. Kuz’min Ideal incompressible hydrodynamics in terms of the vortex momentum density , 1983 .

[50]  R. Rogallo Numerical experiments in homogeneous turbulence , 1981 .

[51]  A. Leonard Vortex methods for flow simulation , 1980 .

[52]  Paul H. Roberts,et al.  A Hamiltonian theory for weakly interacting vortices , 1972 .