Quantum sensors for microscopic tunneling systems

[1]  P. Delsing,et al.  Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits , 2020, 2011.05230.

[2]  M. Abernathy,et al.  Origin of mechanical and dielectric losses from two-level systems in amorphous silicon , 2020, 2008.07489.

[3]  A. Houck,et al.  New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds , 2020, Nature Communications.

[4]  M. Mildner,et al.  Re-epithelialization and immune cell behaviour in an ex vivo human skin model , 2020, Scientific Reports.

[5]  A. Megrant,et al.  Resolving the positions of defects in superconducting quantum bits , 2019, Scientific Reports.

[6]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[7]  R. Barends,et al.  Electric field spectroscopy of material defects in transmon qubits , 2019, npj Quantum Information.

[8]  Clare C. Yu,et al.  Why Phonon Scattering in Glasses is Universally Small at Low Temperatures. , 2019, Physical review letters.

[9]  Mirko Amico,et al.  Experimental study of Shor's factoring algorithm using the IBM Q Experience , 2019, Physical Review A.

[10]  M. Weides,et al.  Optimization of Al/AlOx/Al-layer systems for Josephson junctions from a microstructure point of view , 2019, Journal of Applied Physics.

[11]  Matthew Reagor,et al.  Manufacturing low dissipation superconducting quantum processors , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[12]  M. Weides,et al.  Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. , 2019, Physical review letters.

[13]  P. Delsing,et al.  Decoherence benchmarking of superconducting qubits , 2019, npj Quantum Information.

[14]  H. Neven,et al.  Fluctuations of Energy-Relaxation Times in Superconducting Qubits. , 2018, Physical review letters.

[15]  Masanao Ozawa,et al.  Soundness and completeness of quantum root-mean-square errors , 2018, npj Quantum Information.

[16]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[17]  A. Ustinov,et al.  Probing individual tunneling fluctuators with coherently controlled tunneling systems , 2017, 1710.05883.

[18]  J. Brehm,et al.  Transmission-line resonators for the study of individual two-level tunneling systems , 2017, 1709.00381.

[19]  D. Schuster,et al.  Realization of a Λ System with Metastable States of a Capacitively Shunted Fluxonium. , 2017, Physical review letters.

[20]  M. Weides,et al.  An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts , 2017, 1706.06424.

[21]  J. Cole,et al.  Towards understanding two-level-systems in amorphous solids: insights from quantum circuits , 2017, Reports on progress in physics. Physical Society.

[22]  S. Zanker,et al.  Electronic Decoherence of Two-Level Systems in a Josephson Junction , 2016, 1609.06173.

[23]  A. Shnirman,et al.  Decoherence spectroscopy with individual two-level tunneling defects , 2016, Scientific Reports.

[24]  Luigi Frunzio,et al.  Surface participation and dielectric loss in superconducting qubits , 2015, 1509.01854.

[25]  Stefano Poletto,et al.  Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits , 2015, 1503.01637.

[26]  J. Cole,et al.  Observation of directly interacting coherent two-level systems in an amorphous material , 2015, Nature Communications.

[27]  F. Wellstood,et al.  Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics. , 2015, Physical review letters.

[28]  W. Peng,et al.  Measurements of tunneling barrier thicknesses for Nb/Al–AlOx/Nb tunnel junctions , 2014 .

[29]  John M. Martinis,et al.  Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits , 2014, 1407.4769.

[30]  C. Wilson,et al.  Direct observation of the thickness distribution of ultra thin AlOx barriers in Al/AlOx/Al Josephson junctions , 2014, 1407.0173.

[31]  C. Deng,et al.  Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation , 2013, 1312.7362.

[32]  V. A. Tulin,et al.  Evidence for interacting two-level systems from the 1/f noise of a superconducting resonator , 2013, Nature Communications.

[33]  A. Leggett,et al.  "Tunneling two-level systems" model of the low-temperature properties of glasses: are "smoking-gun" tests possible? , 2013, The journal of physical chemistry. B.

[34]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[35]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[36]  A. Ustinov,et al.  Strain Tuning of Individual Atomic Tunneling Systems Detected by a Superconducting Qubit , 2012, Science.

[37]  L. Ioffe,et al.  Internal loss of superconducting resonators induced by interacting two-level systems. , 2012, Physical review letters.

[38]  Jiansong Gao,et al.  Two Level System Loss in Superconducting Microwave Resonators , 2011, IEEE Transactions on Applied Superconductivity.

[39]  J. Cole,et al.  Measuring the temperature dependence of individual two-level systems by direct coherent control. , 2010, Physical review letters.

[40]  Matthew Neeley,et al.  Lifetime and coherence of two-level defects in a Josephson junction. , 2010, Physical review letters.

[41]  P. Stamp,et al.  Inversion symmetric two-level systems and the low-temperature universality in disordered solids , 2009, 0910.1283.

[42]  M. Neeley Process Tomography of Quantum Memory in a Josephson Phase Qubit , 2008 .

[43]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[44]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[45]  P. Wolynes,et al.  The Microscopic Quantum Theory of Low Temperature Amorphous Solids , 2005, cond-mat/0506708.

[46]  M. Steffen,et al.  Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. , 2004, Physical review letters.

[47]  J. Martinis,et al.  Decoherence in josephson phase qubits from junction resonators. , 2004, Physical review letters.

[48]  Y. Kagan,et al.  On the nature of the universal properties of amorphous solids , 1996 .

[49]  Schober,et al.  Anharmonic potentials and vibrational localization in glasses. , 1991, Physical review. B, Condensed matter.

[50]  Freeman,et al.  Thermal conductivity of amorphous solids. , 1986, Physical review. B, Condensed matter.

[51]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[52]  R. Pohl,et al.  Thermal Conductivity and Specific Heat of Noncrystalline Solids , 1971 .

[53]  A. Bilmes Resolving locations of defects in superconducting transmon qubits , 2019 .

[54]  V. Manucharyan,et al.  Protecting a superconducting qubit from energy decay by selection rule engineering , 2017 .

[55]  Jiansong Gao,et al.  The physics of superconducting microwave resonators , 2008 .

[56]  J. Martinis,et al.  0 40 24 70 v 1 1 8 Fe b 20 04 Decoherence in Josephson Qubits from Junction Resonances , 2004 .

[57]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[58]  S. Girvin,et al.  0 40 73 25 v 1 1 3 Ju l 2 00 4 Circuit Quantum Electrodynamics : Coherent Coupling of a Single Photon to a Cooper Pair Box , 2022 .

[59]  A. Mehdizadeh,et al.  Supplementary References , 2022 .