A modified adaptive improved mapped WENO method

We propose several adaptive control functions and a smoothing approximation of the signum function, and apply them to design mapping functions used to construct new mapped weighted essentially non-oscillatory (WENO) schemes. Our method extends the formulation of the mapping functions used in the WENO-IM(k,A) methods developed in the last years. The new method admits a more extensive permitted range of the parameters in the mapping functions, that it enjoys some mathematical advantages in achieving optimal convergence rates. Improved numerical results are obtained for one-dimensional linear advection cases, especially over long output times. Numerical solutions of the 1D Euler equations with the Sod's shock tube problem, the Shu-Osher shock-entropy wave interaction problem and the Woodward-Colella blastwave problem are compared with results in references. Quite satisfied performances using the new method are demonstrated in the simulation of two severe problems as the Titarev-Toro shock-entropy wave interaction problem and the 123 problem.

[1]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[2]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[3]  F. ARÀNDIGA,et al.  Analysis of WENO Schemes for Full and Global Accuracy , 2011, SIAM J. Numer. Anal..

[4]  Shan Guang-Jiang,et al.  EFFICIENT IMPLEMENTATION OF WEIGHTED ENO SCHEMES , 1995 .

[5]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[6]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[7]  A. Harten ENO schemes with subcell resolution , 1989 .

[8]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[9]  Rong Wang,et al.  A New Mapped Weighted Essentially Non-oscillatory Scheme , 2012, J. Sci. Comput..

[10]  Wai-Sun Don,et al.  High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws , 2011, J. Comput. Phys..

[11]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[12]  Eleuterio F. Toro,et al.  Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .

[13]  G. A. Gerolymos,et al.  Very-high-order weno schemes , 2009, J. Comput. Phys..

[14]  Mengping Zhang,et al.  On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes , 2011 .

[15]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[16]  Eleuterio F. Toro,et al.  TVD Fluxes for the High-Order ADER Schemes , 2005, J. Sci. Comput..

[17]  Rong Wang,et al.  A modified fifth-order WENOZ method for hyperbolic conservation laws , 2016, J. Comput. Appl. Math..

[18]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[19]  Ruo Li,et al.  An Integrated Linear Reconstruction for Finite Volume Scheme on Unstructured Grids , 2016, Journal of Scientific Computing.

[20]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[21]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[22]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[23]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[24]  Eleuterio F. Toro,et al.  WENO schemes based on upwind and centred TVD fluxes , 2005 .

[25]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[26]  Wai-Sun Don,et al.  Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes , 2013, J. Comput. Phys..

[27]  Pengxin Liu,et al.  Piecewise Polynomial Mapping Method and Corresponding WENO Scheme with Improved Resolution , 2015 .

[28]  Rong Wang,et al.  An improved mapped weighted essentially non-oscillatory scheme , 2014, Appl. Math. Comput..