Multivariate Bayesian Cramér-Rao-Type Bound for Stochastic Filtering Involving Periodic States
暂无分享,去创建一个
[1] Kristine L. Bell,et al. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .
[2] Alan S. Willsky,et al. Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.
[3] Serge Reboul,et al. A multi-temporal multi-sensor circular fusion filter , 2014, Inf. Fusion.
[4] Niclas Bergman,et al. Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .
[5] Joseph Tabrikian,et al. Mean-cyclic-error lower bounds via integral transform of likelihood-ratio function , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).
[6] R. Gill,et al. Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .
[7] Pramod K. Varshney,et al. Conditional Posterior Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2012, IEEE Transactions on Signal Processing.
[8] Fredrik Gustafsson,et al. Marginal Weiss-Weinstein bounds for discrete-time filtering , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[9] P. Tichavsky,et al. Posterior Cramer-Rao bound for adaptive harmonic retrieval , 1995, IEEE Trans. Signal Process..
[10] José M. F. Moura,et al. Acquisition in phase demodulation: application to ranging in radar/sonar systems , 1995 .
[11] H.L. Van Trees,et al. Combined Cramer-Rao/Weiss-Weinstein Bound for Tracking Target Bearing , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..
[12] William Fitzgerald,et al. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..
[13] Joseph Tabrikian,et al. A General Class of Outage Error Probability Lower Bounds in Bayesian Parameter Estimation , 2012, IEEE Transactions on Signal Processing.
[14] Yoram Bresler,et al. A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.
[15] Wei-Ping Zhu,et al. Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.
[16] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[17] Joseph Tabrikian,et al. Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.
[18] Fredrik Gustafsson,et al. The Marginal Bayesian Cramér–Rao Bound for Jump Markov Systems , 2016, IEEE Signal Processing Letters.
[19] Christoph F. Mecklenbräuker,et al. Analytic Sequential Weiss–Weinstein Bounds , 2013, IEEE Transactions on Signal Processing.
[20] Carlos H. Muravchik,et al. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..
[21] Joseph Tabrikian,et al. Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.
[22] Joseph Tabrikian,et al. Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.
[23] Hwei P Hsu,et al. Schaum's outline of theory and problems of probability, random variables, and random processes , 1997 .
[24] Lennart Svensson,et al. On the Bayesian Cramér-Rao Bound for Markovian Switching Systems , 2010, IEEE Transactions on Signal Processing.
[25] Ivan Markovic,et al. Moving object detection, tracking and following using an omnidirectional camera on a mobile robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).
[26] Petr Tichavský,et al. Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems , 2001, Autom..
[27] Philippe Forster,et al. A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family , 2008, IEEE Transactions on Signal Processing.
[28] Yaakov Oshman,et al. Weiss–Weinstein Lower Bounds for Markovian Systems. Part 1: Theory , 2007, IEEE Transactions on Signal Processing.
[29] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[30] I. Vaughan L. Clarkson,et al. Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.
[31] H. V. Trees,et al. Some Lower Bounds on Signal Parameter Estimation , 2007 .
[32] Joseph Tabrikian,et al. A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation , 2016, IEEE Transactions on Signal Processing.
[33] Joseph Tabrikian,et al. Cyclic Bayesian Cramér-Rao bound for filtering in circular state space , 2015, 2015 18th International Conference on Information Fusion (Fusion).
[34] Arye Nehorai,et al. Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..
[35] Joseph Tabrikian,et al. Cyclic Cramér-Rao-type bounds for periodic parameter estimation , 2016, 2016 19th International Conference on Information Fusion (FUSION).
[36] M. Zakai,et al. Some Classes of Global Cramer-Rao Bounds , 1987 .
[37] Kristine L. Bell,et al. A General Class of Lower Bounds in Parameter Estimation , 2007 .
[38] Fredrik Gustafsson,et al. The Marginal Enumeration Bayesian Cramér–Rao Bound for Jump Markov Systems , 2014, IEEE Signal Processing Letters.
[39] Yonina C. Eldar,et al. A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function , 2008, IEEE Transactions on Information Theory.
[40] Yossef Steinberg,et al. Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.
[41] Pramod K. Varshney,et al. Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2011, IEEE Trans. Signal Process..
[42] Joseph Tabrikian,et al. General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds , 2010, IEEE Transactions on Information Theory.
[43] S. Reece,et al. Tighter alternatives to the Cramer-Rao lower bound for discrete-time filtering , 2005, 2005 7th International Conference on Information Fusion.
[44] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[45] Kanti V. Mardia,et al. Statistics of Directional Data , 1972 .
[46] A. Willsky,et al. Estimation for Rotational Processes with One Degree of Freedom , 1972 .
[47] Ivan Markovic,et al. Von Mises Mixture PHD Filter , 2015, IEEE Signal Processing Letters.
[48] L. Kronsjö. Algorithms: Their Complexity and Efficiency , 1979 .
[49] Gerhard Kurz,et al. Recursive Bayesian filtering in circular state spaces , 2015, IEEE Aerospace and Electronic Systems Magazine.
[50] Gerhard Kurz,et al. Multivariate angular filtering using fourier series , 2016 .