Multivariate Bayesian Cramér-Rao-Type Bound for Stochastic Filtering Involving Periodic States

In many stochastic filtering problems, some of the states have periodic nature, i.e. the observation model is periodic with respect to these states. For estimation of these periodic states, we are interested in the modulo-$T$ error and not in the plain error value. Thus, in this case, the commonly-used Bayesian mean-squared-error (MSE) lower bounds are inappropriate for performance analysis, since the MSE risk is based on the plain error and is inappropriate for periodic state estimation. In contrast, the mean-cyclic-error (MCE) is an appropriate risk for estimation of periodic states. In a mixed periodic and nonperiodic setting, a mixed MCE and MSE lower bound can be useful for performance analysis and design of filters. In this paper, we present the mixed Bayesian Cramér-Rao bound (BCRB) for stochastic filtering. The mixed BCRB is composed of a cyclic part and a noncyclic part for estimation of the periodic and the nonperiodic states, respectively. Direct computation of the mixed BCRB is not practical, since it requires matrix inversion, whose dimensions increase with time. Therefore, we propose a recursive method with low computational complexity for computation of the mixed BCRB at each time step. The mixed BCRB is examined for direction-of-arrival tracking scenarios and compared to the performance of a particle filter. It is shown that in the considered scenarios the mixed BCRB is informative and can be approached by the particle filter. In addition, the inappropriateness of MSE bounds for estimation of periodic states is demonstrated.

[1]  Kristine L. Bell,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[2]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[3]  Serge Reboul,et al.  A multi-temporal multi-sensor circular fusion filter , 2014, Inf. Fusion.

[4]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[5]  Joseph Tabrikian,et al.  Mean-cyclic-error lower bounds via integral transform of likelihood-ratio function , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

[6]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[7]  Pramod K. Varshney,et al.  Conditional Posterior Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2012, IEEE Transactions on Signal Processing.

[8]  Fredrik Gustafsson,et al.  Marginal Weiss-Weinstein bounds for discrete-time filtering , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  P. Tichavsky,et al.  Posterior Cramer-Rao bound for adaptive harmonic retrieval , 1995, IEEE Trans. Signal Process..

[10]  José M. F. Moura,et al.  Acquisition in phase demodulation: application to ranging in radar/sonar systems , 1995 .

[11]  H.L. Van Trees,et al.  Combined Cramer-Rao/Weiss-Weinstein Bound for Tracking Target Bearing , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[12]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..

[13]  Joseph Tabrikian,et al.  A General Class of Outage Error Probability Lower Bounds in Bayesian Parameter Estimation , 2012, IEEE Transactions on Signal Processing.

[14]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[15]  Wei-Ping Zhu,et al.  Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[17]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[18]  Fredrik Gustafsson,et al.  The Marginal Bayesian Cramér–Rao Bound for Jump Markov Systems , 2016, IEEE Signal Processing Letters.

[19]  Christoph F. Mecklenbräuker,et al.  Analytic Sequential Weiss–Weinstein Bounds , 2013, IEEE Transactions on Signal Processing.

[20]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[21]  Joseph Tabrikian,et al.  Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[22]  Joseph Tabrikian,et al.  Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.

[23]  Hwei P Hsu,et al.  Schaum's outline of theory and problems of probability, random variables, and random processes , 1997 .

[24]  Lennart Svensson,et al.  On the Bayesian Cramér-Rao Bound for Markovian Switching Systems , 2010, IEEE Transactions on Signal Processing.

[25]  Ivan Markovic,et al.  Moving object detection, tracking and following using an omnidirectional camera on a mobile robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Petr Tichavský,et al.  Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems , 2001, Autom..

[27]  Philippe Forster,et al.  A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family , 2008, IEEE Transactions on Signal Processing.

[28]  Yaakov Oshman,et al.  Weiss–Weinstein Lower Bounds for Markovian Systems. Part 1: Theory , 2007, IEEE Transactions on Signal Processing.

[29]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[30]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.

[31]  H. V. Trees,et al.  Some Lower Bounds on Signal Parameter Estimation , 2007 .

[32]  Joseph Tabrikian,et al.  A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation , 2016, IEEE Transactions on Signal Processing.

[33]  Joseph Tabrikian,et al.  Cyclic Bayesian Cramér-Rao bound for filtering in circular state space , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[34]  Arye Nehorai,et al.  Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..

[35]  Joseph Tabrikian,et al.  Cyclic Cramér-Rao-type bounds for periodic parameter estimation , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[36]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[37]  Kristine L. Bell,et al.  A General Class of Lower Bounds in Parameter Estimation , 2007 .

[38]  Fredrik Gustafsson,et al.  The Marginal Enumeration Bayesian Cramér–Rao Bound for Jump Markov Systems , 2014, IEEE Signal Processing Letters.

[39]  Yonina C. Eldar,et al.  A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function , 2008, IEEE Transactions on Information Theory.

[40]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[41]  Pramod K. Varshney,et al.  Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2011, IEEE Trans. Signal Process..

[42]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds , 2010, IEEE Transactions on Information Theory.

[43]  S. Reece,et al.  Tighter alternatives to the Cramer-Rao lower bound for discrete-time filtering , 2005, 2005 7th International Conference on Information Fusion.

[44]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[45]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[46]  A. Willsky,et al.  Estimation for Rotational Processes with One Degree of Freedom , 1972 .

[47]  Ivan Markovic,et al.  Von Mises Mixture PHD Filter , 2015, IEEE Signal Processing Letters.

[48]  L. Kronsjö Algorithms: Their Complexity and Efficiency , 1979 .

[49]  Gerhard Kurz,et al.  Recursive Bayesian filtering in circular state spaces , 2015, IEEE Aerospace and Electronic Systems Magazine.

[50]  Gerhard Kurz,et al.  Multivariate angular filtering using fourier series , 2016 .