Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset

Streptozotocin causes T1D by inducing the translocation of intestinal bacteria into pancreatic lymph nodes and driving the development of pathogenic Th1 and Th17 cells through NOD2 receptor.

[1]  R. Gamelli,et al.  Burn Injury Alters the Intestinal Microbiome and Increases Gut Permeability and Bacterial Translocation , 2015, PloS one.

[2]  C. Alam,et al.  Peritoneal Cavity is a Route for Gut‐Derived Microbial Signals to Promote Autoimmunity in Non‐Obese Diabetic Mice , 2015, Scandinavian journal of immunology.

[3]  K. Herold,et al.  Thinking bedside at the bench: the NOD mouse model of T1DM , 2015, Nature Reviews Endocrinology.

[4]  N. Morgan,et al.  Detection of a Low-Grade Enteroviral Infection in the Islets of Langerhans of Living Patients Newly Diagnosed With Type 1 Diabetes , 2014, Diabetes.

[5]  K. Rittinger,et al.  Interaction between NOD2 and CARD9 involves the NOD2 NACHT and the linker region between the NOD2 CARDs and NACHT domain , 2014, FEBS Letters.

[6]  E. Levy,et al.  A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice , 2014, Gut.

[7]  D. Gordon,et al.  Detection of bacterial DNA in lymph nodes of Crohn's disease patients using high throughput sequencing , 2014, Gut.

[8]  D. Philpott,et al.  NOD proteins: regulators of inflammation in health and disease , 2013, Nature Reviews Immunology.

[9]  J. Bluestone,et al.  Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial. , 2013, The lancet. Diabetes & endocrinology.

[10]  B. White,et al.  Low Incidence of Spontaneous Type 1 Diabetes in Non-Obese Diabetic Mice Raised on Gluten-Free Diets Is Associated with Changes in the Intestinal Microbiome , 2013, PloS one.

[11]  R. Gazzinelli,et al.  Apoptosis-Associated Speck–like Protein Containing a Caspase Recruitment Domain Inflammasomes Mediate IL-1β Response and Host Resistance to Trypanosoma cruzi Infection , 2013, The Journal of Immunology.

[12]  W. Strober,et al.  Nod2 deficiency is associated with an increased mucosal immunoregulatory response to commensal microorganisms , 2013, Mucosal Immunology.

[13]  M. Falcone,et al.  Shaping the (auto)immune response in the gut: the role of intestinal immune regulation in the prevention of type 1 diabetes. , 2013, American journal of clinical and experimental immunology.

[14]  R. Sumpter,et al.  Intestinal epithelial autophagy is essential for host defense against invasive bacteria. , 2013, Cell host & microbe.

[15]  Darrell M. Wilson,et al.  Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials , 2013, The Lancet.

[16]  P. Marchetti,et al.  Reduction of Circulating Neutrophils Precedes and Accompanies Type 1 Diabetes , 2013, Diabetes.

[17]  J. Ilonen,et al.  Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without , 2013, Diabetes.

[18]  L. Ramalho,et al.  Dynamic changes of the Th17/Tc17 and regulatory T cell populations interfere in the experimental autoimmune diabetes pathogenesis. , 2013, Immunobiology.

[19]  F. Tinahones,et al.  Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study , 2013, BMC Medicine.

[20]  R. Lahesmaa,et al.  Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction , 2012, Diabetologia.

[21]  M. Kudo,et al.  Sensing of commensal organisms by the intracellular sensor NOD1 mediates experimental pancreatitis. , 2012, Immunity.

[22]  F. Cunha,et al.  α1-Acid Glycoprotein Decreases Neutrophil Migration and Increases Susceptibility to Sepsis in Diabetic Mice , 2012, Diabetes.

[23]  Ian D. Caterson,et al.  Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice , 2012, PloS one.

[24]  R. Flavell,et al.  Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c+ CD11b+ dendritic cells , 2012, Proceedings of the National Academy of Sciences.

[25]  H. Wiendl,et al.  IL-17 Silencing Does Not Protect Nonobese Diabetic Mice from Autoimmune Diabetes , 2012, The Journal of Immunology.

[26]  R. Gazzinelli,et al.  Intrinsic expression of Nod2 in CD4+ T lymphocytes is not necessary for the development of cell‐mediated immunity and host resistance to Toxoplasma gondii , 2011, European journal of immunology.

[27]  P. Tobias,et al.  Corrigendum to "Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes" [Cytokine 55 (2011) 441-445] , 2011 .

[28]  Olli Simell,et al.  Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes , 2011, PloS one.

[29]  P. Tobias,et al.  Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes. , 2011, Cytokine.

[30]  B. Kasinath,et al.  Knockout of Toll-Like Receptor-2 Attenuates Both the Proinflammatory State of Diabetes and Incipient Diabetic Nephropathy , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[31]  P. Marchetti,et al.  Peripheral and Islet Interleukin-17 Pathway Activation Characterizes Human Autoimmune Diabetes and Promotes Cytokine-Mediated β-Cell Death , 2011, Diabetes.

[32]  M. Riddle,et al.  Detection bias and the association between inflammatory bowel disease and Salmonella and Campylobacter infection , 2011, Gut.

[33]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[34]  Héctor Corrada Bravo,et al.  Intensity normalization improves color calling in SOLiD sequencing , 2010, Nature Methods.

[35]  D. Gibson,et al.  Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice , 2010, Diabetologia.

[36]  Kaoru Tominaga,et al.  Activation of innate immune antiviral response by NOD2 , 2009, Nature Immunology.

[37]  A. Aderem,et al.  The Toll-Like Receptor Signaling Molecule Myd88 Contributes to Pancreatic Beta-Cell Homeostasis in Response to Injury , 2009, PloS one.

[38]  A. Shapiro,et al.  Inhibition of Th17 Cells Regulates Autoimmune Diabetes in NOD Mice , 2009, Diabetes.

[39]  T. van de Wiele,et al.  Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability , 2009, Gut.

[40]  J. Neu,et al.  The “Perfect Storm” for Type 1 Diabetes , 2008, Diabetes.

[41]  J. Ribeiro,et al.  Phlebotomine salivas inhibit immune inflammation‐induced neutrophil migration via an autocrine DC‐derived PGE2/IL‐10 sequential pathway , 2008, Journal of leukocyte biology.

[42]  O. Vaarala,et al.  Infiltration of forkhead box P3‐expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes , 2008, Clinical and experimental immunology.

[43]  M. Kelliher,et al.  NOD2 Pathway Activation by MDP or Mycobacterium tuberculosis Infection Involves the Stable Polyubiquitination of Rip2* , 2007, Journal of Biological Chemistry.

[44]  Kun Wook Chung,et al.  Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. , 2007, Immunity.

[45]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[46]  X. Qin,et al.  The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens , 2007, Nature Immunology.

[47]  R. Paroni,et al.  Increased intestinal permeability precedes clinical onset of type 1 diabetes , 2006, Diabetologia.

[48]  H. Harmsen,et al.  Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? , 2006, Diabetologia.

[49]  M. Lukic,et al.  IL‐23 leads to diabetes induction after subdiabetogenic treatment with multiple low doses of streptozotocin , 2006, European journal of immunology.

[50]  C. Benoist,et al.  Endocrine self and gut non-self intersect in the pancreatic lymph nodes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Knight,et al.  UniFrac: a New Phylogenetic Method for Comparing Microbial Communities , 2005, Applied and Environmental Microbiology.

[52]  Setsuya Aiba,et al.  Synergistic Effect of Nod1 and Nod2 Agonists with Toll-Like Receptor Agonists on Human Dendritic Cells To Generate Interleukin-12 and T Helper Type 1 Cells , 2005, Infection and Immunity.

[53]  J. Alcolado,et al.  Animal models of diabetes mellitus , 2005, Diabetic medicine : a journal of the British Diabetic Association.

[54]  J. Ilonen,et al.  Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. , 2003, Diabetes.

[55]  J. Bach,et al.  The effect of infections on susceptibility to autoimmune and allergic diseases. , 2002, The New England journal of medicine.

[56]  L. Bruno,et al.  Effect of Modified Diabetic Splenocytes on Mice Injected with Splenocytes from Multiple Low-Dose Streptozotocin Diabetic Donors , 2001, Experimental biology and medicine.

[57]  J. Ilonen,et al.  Jejuna of patients with insulin‐dependent diabetes mellitus (IDDM) show signs of immune activation , 1999, Clinical and experimental immunology.

[58]  I. Cohen,et al.  Autoimmune Diabetes Induced by the β-cell Toxin STZ: Immunity to the 60-kDa Heat Shock Protein and to Insulin , 1994, Diabetes.

[59]  M. V. von Herrath,et al.  How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. , 1994, Immunity.

[60]  S. Paik,et al.  Insulin-dependent diabetes mellitus induced by subdiabetogenic doses of streptozotocin: obligatory role of cell-mediated autoimmune processes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[61]  T. Onodera,et al.  Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. , 1979, The New England journal of medicine.

[62]  A. Rossini,et al.  Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. , 1976, Science.

[63]  J. Craighead,et al.  Diabetes Mellitus: Induction in Mice by Encephalomyocarditis Virus , 1968, Science.

[64]  M. Reinshagen [Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease]. , 2015, Zeitschrift fur Gastroenterologie.

[65]  A. Kane,et al.  Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. , 2015, The Journal of infectious diseases.

[66]  M. V. von Herrath,et al.  Virus infections in type 1 diabetes. , 2012, Cold Spring Harbor perspectives in medicine.

[67]  M. V. von Herrath,et al.  Type 1 diabetes: etiology, immunology, and therapeutic strategies. , 2011, Physiological reviews.

[68]  A. Shapiro,et al.  Inhibition of Th 17 cells regulates autoimmune diabetes in NOD mice Running Title : A role for Th 17 cells in autoimmune diabetes , 2009 .

[69]  J. Stockman The Rising Incidence of Childhood Type 1 Diabetes and Reduced Contribution of High-Risk HLA Haplotypes , 2006 .

[70]  R. Rosa,et al.  Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. , 2004, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.

[71]  Donna S Watson,et al.  The perfect storm. , 2002, AORN journal.

[72]  E. Leiter Multiple low-dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. , 1982, Proceedings of the National Academy of Sciences of the United States of America.