Origin of high piezoelectric response of Pb(ZrxTi1-x)O3 at the morphotropic phase boundary : Role of elastic instability

Temperature dependent structural changes in a nearly pure monoclinic phase composition (x=0.525) of Pb(ZrxTi1−x)O3 (PZT) have been investigated using Rietveld analysis of high-resolution synchrotron powder x-ray diffraction data and correlated with changes in the dielectric constant and planar electromechanical coupling coefficient. Our results show that the intrinsic piezoelectric response of the tetragonal phase of PZT is higher than that of the monoclinic phase. It is also shown that the high piezoelectric response of PZT may be linked with an anomalous softening of the elastic modulus (1∕S11E) of the tetragonal compositions closest to the morphotropic phase boundary.

[1]  G. Burns,et al.  Raman Spectra of Polycrystalline Solids; Application to the Pb Ti 1 − x Zr x O 3 System , 1970 .

[2]  Ragini,et al.  Evidence for another low-temperature phase transition in tetragonal Pb(Zr x Ti 1-x )O 3 (x=0.515,0.520) , 2001 .

[3]  Ragini,et al.  Antiferrodistortive phase transition in Pb(Ti 0.48 Zr 0.52 )O 3 : space group of the lowest temperature monoclinic phase , 2002 .

[4]  L. Bellaiche,et al.  Morphotropic phase boundary of heterovalent perovskite solid solutions : Experimental and theoretical investigation of PbSc1/2Nb1/2O3-PbTiO3 , 2005 .

[5]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[6]  Ragini,et al.  Room temperature structure of Pb(ZrxTi1−xO3) around the morphotropic phase boundary region: A Rietveld study , 2002 .

[7]  D. Vanderbilt,et al.  Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.

[8]  Peter W. Stephens,et al.  Phenomenological model of anisotropic peak broadening in powder diffraction , 1999 .

[9]  A. Singh,et al.  Powder neutron diffraction study of phase transitions in and a phase diagram of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 , 2006 .

[10]  A. Singh,et al.  Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A Rietveld study , 2002, cond-mat/0210108.

[11]  A. Pinczuk ‘Soft’ optical phonons and the morphotropic phase transition of the Pb(Ti1−x, Zrx)O3 system , 1973 .

[12]  Ragini,et al.  Comparison of the Cc and R3c space groups for the superlattice phase of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} , 2005 .

[13]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[14]  S. Mishra,et al.  Low-temperature synthesis of chemically homogeneous lead zirconate titanate (PZT) powders by a semi-wet method , 1993, Journal of Materials Science.

[15]  W. Richter,et al.  Soft mode behavior in PbTi1−xZbxO3 , 1974 .

[16]  A. Singh,et al.  Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 , 2001 .

[17]  Brahim Dkhil,et al.  Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds , 2001, cond-mat/0109217.