Non-Gaussianities and tensor-to-scalar ratio in non-local R2-like inflation

[1]  Masahide Yamaguchi,et al.  Generalized ghost-free propagators in nonlocal field theories , 2020, Physical Review D.

[2]  Mark Halpern,et al.  CMB-S4 Science Case, Reference Design, and Project Plan , 2019, 1907.04473.

[3]  Frank Saueressig,et al.  Form factors in asymptotic safety: conceptual ideas and computational toolbox , 2019, Classical and Quantum Gravity.

[4]  R. B. Barreiro,et al.  Planck 2018 results. IX. Constraints on primordial non-Gaussianity , 2019, 1905.05697.

[5]  A. Mazumdar,et al.  Perturbations in higher derivative gravity beyond maximally symmetric spacetimes , 2019, Physical Review D.

[6]  Frank Saueressig,et al.  Resolving Spacetime Singularities within Asymptotic Safety. , 2019, Physical review letters.

[7]  Shaul Hanany,et al.  Probing the origin of our Universe through cosmic microwave background constraints on gravitational waves , 2019, 1903.04700.

[8]  A. Mazumdar,et al.  Nonlocal star as a blackhole mimicker , 2019, Physical Review D.

[9]  P. A. R. Ade,et al.  LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection , 2019, Journal of Low Temperature Physics.

[10]  S. Matarrese,et al.  Primordial Non-Gaussianity , 2018, 1812.08197.

[11]  A. Mazumdar,et al.  Transmutation of nonlocal scale in infinite derivative field theories , 2018, Physical Review D.

[12]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[13]  A. Mazumdar,et al.  Ghost-free infinite derivative quantum field theory , 2018, Nuclear Physics B.

[14]  R. W. Ogburn,et al.  Constraints on Primordial Gravitational Waves Using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season. , 2018, Physical review letters.

[15]  J. Marto,et al.  Towards nonsingular rotating compact object in ghost-free infinite derivative gravity , 2018, Physical Review D.

[16]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[17]  A. G. Vieregg,et al.  BICEP Array: a multi-frequency degree-scale CMB polarimeter , 2018, Astronomical Telescopes + Instrumentation.

[18]  Shaul Hanany,et al.  PICO - the probe of inflation and cosmic origins , 2018, Astronomical Telescopes + Instrumentation.

[19]  A. Mazumdar,et al.  Nonsingular metric for an electrically charged point-source in ghost-free infinite derivative gravity , 2018, Physical Review D.

[20]  J. Marto,et al.  Conformally-flat, non-singular static metric in infinite derivative gravity , 2018, Journal of Cosmology and Astroparticle Physics.

[21]  A. Mazumdar,et al.  Classical properties of non-local, ghost- and singularity-free gravity , 2018, Journal of Cosmology and Astroparticle Physics.

[22]  L. Modesto,et al.  Finite quantum gravity in dS and AdS spacetimes , 2017, Physical Review D.

[23]  A. G. Vieregg,et al.  BICEP 2 / Keck Array X : Constraints on Primordial Gravitational Waves using Planck , WMAP , and New BICEP 2 / Keck Observations through the 2015 Season , 2018 .

[24]  A. Starobinsky,et al.  R2 inflation to probe non-perturbative quantum gravity , 2017, Journal of High Energy Physics.

[25]  A. Mazumdar,et al.  Do massive compact objects without event horizon exist in infinite derivative gravity , 2017, 1707.00273.

[26]  A. Mazumdar,et al.  Consistent Higher Derivative Gravitational theories with stable de Sitter and Anti-de Sitter Backgrounds , 2016, 1606.01250.

[27]  A. Mazumdar,et al.  Universality of testing ghost-free gravity , 2016 .

[28]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[29]  J. V. Wijck,et al.  The conformal limit of inflation in the era of CMB polarimetry , 2016, 1609.06993.

[30]  A. Mazumdar,et al.  Defocusing of null rays in infinite derivative gravity , 2016, 1605.02080.

[31]  A. Starobinsky,et al.  Occurrence of exact R2 inflation in non-local UV-complete gravity , 2016, 1604.03127.

[32]  A. Mazumdar,et al.  Behavior of the Newtonian potential for ghost-free gravity and singularity free gravity , 2016, 1604.01989.

[33]  A. Mazumdar,et al.  High-energy scatterings in infinite-derivative field theory and ghost-free gravity , 2016, 1603.03440.

[34]  A. Mazumdar,et al.  Gravitational theories with stable (anti-)de Sitter backgrounds , 2016, 1602.08475.

[35]  E. Tomboulis Nonlocal and quasilocal field theories , 2015, 1507.00981.

[36]  L. Modesto,et al.  Scattering amplitudes in super-renormalizable gravity , 2015, 1506.04589.

[37]  R. Brandenberger String gas cosmology after Planck , 2015, 1505.02381.

[38]  Juan Maldacena,et al.  Cosmological Collider Physics , 2015, 1503.08043.

[39]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[40]  E. Tomboulis Renormalization and unitarity in higher derivative and nonlocal gravity theories , 2015 .

[41]  H. Peiris,et al.  Gravitational wave consistency relations for multifield inflation. , 2014, Physical review letters.

[42]  Matias Zaldarriaga,et al.  Testing Inflation with Large Scale Structure: Connecting Hopes with Reality , 2014, 1412.4671.

[43]  A. Mazumdar,et al.  Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity , 2014, 1412.3467.

[44]  C. Byrnes Lecture Notes on Non-Gaussianity , 2014, 1411.7002.

[45]  A. Barvinsky Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology , 2014 .

[46]  A. Mazumdar,et al.  Geodesic completeness and homogeneity condition for cosmic inflation , 2014, 1408.6205.

[47]  A.O.Barvinsky Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology , 2014, 1408.6112.

[48]  L. Modesto,et al.  Super-renormalizable and finite gravitational theories , 2014, 1407.8036.

[49]  M. Schnabl Noncommutative Geometry and String Field Theory , 2014 .

[50]  B. Craps,et al.  Cosmological perturbations in non-local higher-derivative gravity , 2014, 1407.4982.

[51]  Tomo Takahashi Primordial non-Gaussianity and the inflationary Universe , 2014 .

[52]  Andrei Linde Inflationary Cosmology after Planck 2013 , 2014, 1402.0526.

[53]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[54]  Tsutomu Kobayashi,et al.  Multifield extension of G inflation , 2013 .

[55]  A. Mazumdar,et al.  Generalized ghost-free quadratic curvature gravity , 2013, 1308.2319.

[56]  A. Koshelev Stable analytic bounce in non-local Einstein–Gauss–Bonnet cosmology , 2013, 1302.2140.

[57]  A. Mazumdar,et al.  Nonlocal theories of gravity: the flat space propagator , 2013, 1302.0532.

[58]  S. Tsujikawa,et al.  Shapes of primordial non-Gaussianities in the Horndeski's most general scalar-tensor theories , 2013, 1301.5721.

[59]  E. Saridakis,et al.  Inflation in (super-)renormalizable gravity , 2012, 1212.3611.

[60]  Jérôme Martin,et al.  Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation , 2012, 1211.0083.

[61]  M. Sasaki,et al.  Violation of non-Gaussianity consistency relation in a single-field inflationary model , 2012, 1210.3692.

[62]  A. Mazumdar,et al.  Stable bounce and inflation in non-local higher derivative cosmology , 2012, 1206.6374.

[63]  A. Starobinsky,et al.  Inflation and nonminimal scalar-curvature coupling in gravity and supergravity , 2012, 1203.0805.

[64]  A. Mazumdar,et al.  Towards singularity- and ghost-free theories of gravity. , 2011, Physical review letters.

[65]  Leonardo Modesto,et al.  Super-renormalizable Quantum Gravity , 2011, 1107.2403.

[66]  J. Yokoyama,et al.  Generalized G-Inflation —Inflation with the Most General Second-Order Field Equations— , 2011, 1105.5723.

[67]  S. Tsujikawa,et al.  Primordial non-Gaussianities in general modified gravitational models of inflation , 2011, 1103.1172.

[68]  A. Starobinsky,et al.  Embedding (R+R^2)-Inflation into Supergravity , 2010, 1011.0240.

[69]  E. Komatsu,et al.  A new method for calculating the primordial bispectrum in the squeezed limit , 2010, 1006.5457.

[70]  A. Mazumdar,et al.  Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity , 2010, 1005.0590.

[71]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[72]  Xingang Chen Primordial Non-Gaussianities from Inflation Models , 2010, 1002.1416.

[73]  Yi Wang,et al.  Quasi-Single Field Inflation and Non-Gaussianities , 2009, 0911.3380.

[74]  Xian Gao Primordial non-Gaussianities of general multiple-field inflation , 2008, 0804.1055.

[75]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[76]  J. Kaplan,et al.  On the consistency relation of the three-point function in single-field inflation , 2007, 0709.0295.

[77]  F. Hansen,et al.  Temperature and Polarization CMB Maps from Primordial non-Gaussianities of the Local Type , 2007, 0708.3786.

[78]  S. Deser,et al.  Nonlocal cosmology. , 2007, Physical review letters.

[79]  G. Calcagni,et al.  Route to nonlocal cosmology , 2007, 0705.3043.

[80]  J. Cline,et al.  Large non-Gaussianity from non-local inflation , 2007, 0704.3426.

[81]  Tirthabir Biswas,et al.  p-adic inflation , 2006, hep-th/0612230.

[82]  J. Khoury Fading gravity and self-inflation , 2006, hep-th/0612052.

[83]  Gary Shiu,et al.  Observational signatures and non-Gaussianities of general single-field inflation , 2006, hep-th/0605045.

[84]  I. Aref’eva,et al.  Exact solution in a string cosmological model , 2006 .

[85]  G. Calcagni Cosmological tachyon from cubic string field theory , 2005, hep-th/0512259.

[86]  Anupam Mazumdar,et al.  Bouncing universes in string-inspired gravity , 2005, hep-th/0508194.

[87]  A. Starobinsky Inflaton field potential producing an exactly flat spectrum of adiabatic perturbations , 2005, astro-ph/0507193.

[88]  S. Weinberg Quantum contributions to cosmological correlations , 2005, hep-th/0506236.

[89]  D. Seery,et al.  Primordial non-Gaussianities in single-field inflation , 2005, astro-ph/0503692.

[90]  I. Aref’eva,et al.  Exactly Solvable SFT Inspired Phantom Model , 2004, astro-ph/0412619.

[91]  Matias Zaldarriaga,et al.  Single field consistency relation for the 3-point function , 2004 .

[92]  E. Komatsu,et al.  Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.

[93]  M. Zaldarriaga,et al.  The shape of non-Gaussianities , 2004, astro-ph/0405356.

[94]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[95]  K. Ohmori A Review on Tachyon Condensation in Open String Field Theories , 2001, hep-th/0102085.

[96]  S. Hawking,et al.  Trace anomaly driven inflation , 2000, hep-th/0010232.

[97]  David N. Spergel,et al.  Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.

[98]  E. Tomboulis Superrenormalizable gauge and gravitational theories , 1997, hep-th/9702146.

[99]  A. Barvinsky,et al.  Covariant perturbation theory (II). Second order in the curvature. General algorithms , 1990 .

[100]  Y. Kuzmin THE CONVERGENT NONLOCAL GRAVITATION. (IN RUSSIAN) , 1989 .

[101]  N. Krasnikov Nonlocal gauge theories , 1987 .

[102]  E. Witten Interacting field theory of open superstrings , 1986 .

[103]  Edward Witten,et al.  Non-commutative geometry and string field theory , 1986 .

[104]  B. Zwiebach Curvature Squared Terms and String Theories , 1985 .

[105]  A. A. Starobinskii The perturbation spectrum evolving from a nonsingular, initially de Sitter cosmology, and the microwave background anisotropy , 1983 .

[106]  A. A. Starobinskii Evolution of small perturbations of isotropic cosmological models with one-loop quantum gravitational corrections , 1981 .

[107]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[108]  K. Stelle Classical gravity with higher derivatives , 1978 .

[109]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[110]  C. Isham,et al.  Non-local conformal anomalies☆ , 1976 .