The Primordial Abundance of 4He: A Self-consistent Empirical Analysis of Systematic Effects in a Large Sample of Low-Metallicity H II Regions

We determine the primordial helium mass fraction Yp using 93 spectra of 86 low-metallicity extragalactic H II regions. This sample constitutes the largest and most homogeneous high-quality data set in existence for the determination of Yp. For comparison, and to improve the statistics in our investigation of systematic effects affecting the Yp determination, we have also considered a sample of 271 low-metallicity H II regions selected from Data Release 5 of the Sloan Digital Sky Survey. Although this larger sample shows more scatter, it gives results that are consistent at the 2 σ level with our original sample. We have considered known systematic effects that may affect the 4He abundance determination. They include different sets of He I line emissivities and reddening laws, collisional and fluorescent enhancements of He I recombination lines, underlying He I stellar absorption lines, collisional excitation of hydrogen lines, temperature and ionization structure of the H II region, and deviation of He I and H emission-line intensities from case B. However, the most likely value of Yp depends on the adopted set of He I line emissivities. Using Monte Carlo methods to solve simultaneously the above systematic effects, we find a primordial helium mass fraction of Yp = 0.2472 ± 0.0012 when using the He I emissivities from Benjamin and coworkers and 0.2516 ± 0.0011 when using those from Porter and coworkers. The first value agrees well with the value given by standard big bang nucleosynthesis (SBBN) theory, while the value obtained with the likely more accurate emissivities of Porter and coworkers is higher at the 2 σ level. This latter value, if confirmed, would imply slight deviations from SBBN.

[1]  Kyiv,et al.  Balmer jump temperature determination in a large sample of low-metallicity HII regions , 2007, astro-ph/0701032.

[2]  G. Ferland,et al.  He I Emission in the Orion Nebula and Implications for Primordial Helium Abundance , 2006, astro-ph/0611579.

[3]  Santiago,et al.  First stars VII - Lithium in extremely metal poor dwarfs , 2006, astro-ph/0610245.

[4]  J. Prochaska,et al.  The Deuterium-to-Hydrogen Abundance Ratio toward the QSO SDSS J155810.16–003120.0 , 2006, astro-ph/0608302.

[5]  M. Kawasaki,et al.  Implications of dark energy parametrizations for the determination of the curvature of the universe , 2006, astro-ph/0605481.

[6]  M. Fukugita,et al.  Primordial Helium Abundance: A Reanalysis of the Izotov-Thuan Spectroscopic Sample , 2006, astro-ph/0603334.

[7]  T. Thuan,et al.  Balmer and Paschen Jump Temperature Determinations in Low-Metallicity Emission-Line Galaxies , 2006, astro-ph/0603134.

[8]  Kyiv,et al.  The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey , 2005, astro-ph/0511644.

[9]  G. Steigman PRIMORDIAL NUCLEOSYNTHESIS: SUCCESSES AND CHALLENGES , 2005, astro-ph/0511534.

[10]  F. Primas,et al.  The lithium content of the Galactic Halo stars , 2005 .

[11]  Francesca Primas,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 LITHIUM ISOTOPIC ABUNDANCES IN METAL-POOR HALO , 2005 .

[12]  Y. Tsamis,et al.  A photoionization-modelling study of 30 Doradus: the case for small-scale chemical inhomogeneity , 2005, astro-ph/0509463.

[13]  Ukraine,et al.  High-Ionization Emission in Metal-deficient Blue Compact Dwarf Galaxies , 2005, astro-ph/0507209.

[14]  M. Ruiz,et al.  Deep echelle spectrophotometry of S 311, a Galactic H ii region located outside the solar circle , 2005, astro-ph/0506409.

[15]  G. Ferland,et al.  J-Resolved He I Emission Predictions in the Low-Density Limit , 2005, astro-ph/0504083.

[16]  G. Ferland,et al.  Theoretical He I Emissivities in the Case B Approximation , 2005, astro-ph/0502224.

[17]  G. Steigman Neutrinos and Big Bang Nucleosynthesis , 2005, 1208.0032.

[18]  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.

[19]  K. Olive,et al.  A Realistic Determination of the Error on the Primordial Helium Abundance: Steps toward Nonparametric Nebular Helium Abundances , 2004, astro-ph/0405588.

[20]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[21]  M. Ruiz,et al.  Chemical Abundances of the Galactic H II Region NGC 3576 Derived from Very Large Telescope Echelle Spectrophotometry , 2004, astro-ph/0404123.

[22]  N. Crighton,et al.  Deuterium/hydrogen in a new Lyman limit absorption system at z= 3.256 towards PKS1937−1009 , 2004, astro-ph/0403512.

[23]  T. Thuan,et al.  Systematic Effects and a New Determination of the Primordial Abundance of 4He and dY/dZ from Observations of Blue Compact Galaxies , 2003, astro-ph/0310421.

[24]  P. Langacker,et al.  Hiding relativistic degrees of freedom in the early universe , 2003, hep-ph/0306061.

[25]  G. Steigman,et al.  Effective number of neutrinos and baryon asymmetry from BBN and WMAP , 2003, hep-ph/0305075.

[26]  M. Cerviño,et al.  The Effect of Collisional Enhancement of Balmer Lines on the Determination of the Primordial Helium Abundance , 2003, astro-ph/0304152.

[27]  B. Gibson,et al.  The Cosmic Production of Helium , 2003, Science.

[28]  R. Salvaterra,et al.  Is primordial 4He truly from the Big Bang , 2003, astro-ph/0302285.

[29]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[30]  N. Suzuki,et al.  The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047 , 2003, astro-ph/0302006.

[31]  C. Chiosi,et al.  Zero-metallicity stars - II. Evolution of very massive objects with mass loss , 2002, astro-ph/0212057.

[32]  Kyiv,et al.  The emission line sequence of H II galaxies , 2002, astro-ph/0301442.

[33]  A. Peimbert The Chemical Composition of the 30 Doradus Nebula Derived from Very Large Telescope Echelle Spectrophotometry , 2002, astro-ph/0208502.

[34]  Linda J. Smith,et al.  Realistic ionizing fluxes for young stellar populations from 0.05 to 2 Z , 2002, astro-ph/0207554.

[35]  B. Burrows,et al.  A hydrogen-like atom confined within an impenetrable spherical box , 2002 .

[36]  R. Benjamin,et al.  Radiative Transfer Effects in He I Emission Lines , 2002, astro-ph/0202227.

[37]  D. Balser,et al.  The cosmological density of baryons from observations of 3He+ in the Milky Way , 2002, Nature.

[38]  R. Gruenwald,et al.  The Evolution of Helium and Hydrogen Ionization Corrections as H II Regions Age , 2001, astro-ph/0109071.

[39]  M. Peimbert,et al.  Temperature Bias and the Primordial Helium Abundance Determination , 2001, astro-ph/0107189.

[40]  Kyiv,et al.  Collisional excitation of hydrogen and the determination of the primordial helium abundance from H II regions , 2001, astro-ph/0109253.

[41]  M. Pettini,et al.  A New Measurement of the Primordial Abundance of Deuterium: Toward Convergence with the Baryon Density from the Cosmic Microwave Background? , 2001, astro-ph/0104474.

[42]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[43]  J. Carlstrom,et al.  Cosmological Parameter Extraction from the First Season of Observations with DASI , 2001, astro-ph/0104490.

[44]  Systematic uncertainties in the determination of the primordial He-4 abundance , 2001, astro-ph/0104392.

[45]  G. Steigman,et al.  How Does CMB + BBN Constrain New Physics? , 2001, astro-ph/0101386.

[46]  T. O. S. University,et al.  Extended quintessence and the primordial helium abundance , 2000, astro-ph/0011531.

[47]  J. Prochaska,et al.  The Deuterium to Hydrogen Abundance Ratio toward a Fourth QSO: HS 0105+1619 , 2000, astro-ph/0011179.

[48]  D. Bowen A NEW MEASUREMENT OF THE PRIMORDIAL ABUNDANCE OF DEUTERIUM: TOWARDS CONVERGENCE WITH THE BARYON DENSITY FROM THE CMB? , 2001 .

[49]  Alan D. Martin,et al.  Review of Particle Physics: Particle data group , 2012 .

[50]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[51]  Thommy I. Larsen,et al.  The chemical evolution of gas‐rich dwarf galaxies , 2000, astro-ph/0005249.

[52]  N. Badnell,et al.  An R-matrix with pseudo-states approach to the electron-impact excitation of H I for diagnostic applications in fusion plasmas , 2000 .

[53]  M. Ruiz,et al.  The Chemical Composition of the Small Magellanic Cloud H II Region NGC 346 and the Primordial Helium Abundance , 2000, astro-ph/0003154.

[54]  G. Ferland,et al.  The Primordial Helium Abundance: Toward Understanding and Removing the Cosmic Scatter in the dY/dZ Relation , 2000, astro-ph/0002047.

[55]  G. Ferland Hydrogen Emission from Low Column Density Gas: Case C , 1999 .

[56]  R. Gruenwald,et al.  Ionization Corrections for Low-Metallicity H II Regions and the Primordial Helium Abundance , 1999, astro-ph/9909213.

[57]  C. Leitherer,et al.  Synthetic Spectra of H Balmer and He I Absorption Lines. II. Evolutionary Synthesis Models for Starburst and Poststarburst Galaxies , 1999, astro-ph/9907116.

[58]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[59]  T. Thuan,et al.  Heavy-Element Abundances in Blue Compact Galaxies , 1998, astro-ph/9811387.

[60]  R. Benjamin,et al.  Improving Predictions for Helium Emission Lines , 1998, astro-ph/9810087.

[61]  T. Thuan,et al.  The Primordial Abundance of 4He Revisited , 1998 .

[62]  T. Thuan,et al.  Reexamining the Helium Abundance of I Zw 18 , 1998 .

[63]  C. Esteban,et al.  Chemical composition of the Orion nebula derived from echelle spectrophotometry , 1998 .

[64]  S. Sarkar,et al.  Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations , 1998, astro-ph/9803177.

[65]  S. Burles,et al.  The Deuterium Abundance Towards Q1937-1009 , 1997, astro-ph/9712108.

[66]  S. Burles,et al.  The Deuterium Abundance toward QSO 1009+2956 , 1997, astro-ph/9712109.

[67]  T. Thuan,et al.  Nearby Young Dwarf Galaxies: Primordial Gas and Lyα Emission , 1997 .

[68]  R. Gruenwald,et al.  Temperature Fluctuations and Abundances in H II Galaxies , 1997, astro-ph/9704167.

[69]  P. Bonifacio,et al.  The primordial lithium abundance , 1996, astro-ph/9611043.

[70]  V. Lipovetsky,et al.  The Primordial Helium Abundance: Systematic Effects and a New Determination , 1997 .

[71]  K. Olive,et al.  The Primordial Abundance of 4He: An Update , 1996, astro-ph/9611166.

[72]  V. Lipovetsky,et al.  Heavy element abundances in a new sample of low-metallicity blue compact galaxies , 1995 .

[73]  K. Olive,et al.  On the abundance of primordial helium , 1994, astro-ph/9405022.

[74]  R. Terlevich,et al.  Violent star formation in NGC 2363 , 1994 .

[75]  V. Lipovetsky,et al.  The Primordial helium abundance from a new sample of metal-deficient blue compact galaxies , 1994 .

[76]  P. J. Storey,et al.  The O++/H+ abundance ratio in gaseous nebulae derived from recombination lines. , 1993 .

[77]  Joab R Winkler,et al.  Numerical recipes in C: The art of scientific computing, second edition , 1993 .

[78]  R. Terlevich,et al.  The Primordial helium abundance from observations of extragalactic H-II regions , 1992 .

[79]  D. G. Hummer,et al.  Recombination line intensities for hydrogenic ions. III - Effects of finite optical depth and dust , 1992 .

[80]  K. Olive,et al.  Primordial nucleosynthesis redux , 1991 .

[81]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[82]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[83]  G. Ferland,et al.  Hydrogen Emissivity in Realistic Nebulae: The Effects of Velocity Fields and Internal Dust , 1988 .

[84]  H. Dinerstein,et al.  Reassessing the primordial helium abundance - new observations of NGC 4861 and CG 1116 + 51 , 1986 .

[85]  M. Peña THE IONIZATION STRUCTURE OF HELIUM IN H II REGION COMPLEXES. , 1986 .

[86]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[87]  T. D. Kinman,et al.  Primordial helium, spectrophotometric technique, and I Zwicky 18 , 1985 .

[88]  Lawrence H. Aller,et al.  Physics of thermal gaseous nebulae , 1984 .

[89]  W. Sargent,et al.  Spectrophotometry of 12 metal-poor galaxies : implications for the primordial helium abundance. , 1983 .

[90]  J. Bond,et al.  Can Population III stars generate primordial helium? , 1983, Nature.

[91]  M. Peimbert,et al.  Gradients in the physical conditions of M101 and the pregalactic helium abundance , 1982 .

[92]  M. Peimbert,et al.  Chemical composition of H ii regions in the Small Magellanic Cloud and the pregalactic helium abundance , 1976 .

[93]  M. Peimbert,et al.  Chemical composition of H II regions in the Large Magellanic Cloud and its cosmological implications , 1974 .

[94]  M. Peimbert Temperature Determinations of H II Regions , 1967 .

[95]  A. Whitford The law of interstellar reddening. , 1958 .

[96]  William I. Fine Realistic Determination of the Error on the Primordial Helium Abundance : Steps Toward Non-Parametric Nebular Helium Abundances , 2022 .