Resolutions of the Coulomb operator.

We discuss a generalization of the resolution of the identity by considering one-body resolutions of two-body operators, with particular emphasis on the Coulomb operator. We introduce a set of functions that are orthonormal with respect to 1r(12) and propose that the resulting "resolution of the Coulomb operator," r(12) (-1)=mid R:phi(i)phi(i)mid R:, may be useful for the treatment of large systems due to the separation of two-body interactions. We validate our approach by using it to compute the Coulomb energy of large systems of point charges.

[1]  Stephen W. Taylor,et al.  Modeling the potential of a charge distribution , 1992 .

[2]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[3]  Ronald H. Felton,et al.  A new computational approach to Slater’s SCF–Xα equation , 1975 .

[4]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[5]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[6]  K. Schmidt,et al.  Implementing the fast multipole method in three dimensions , 1991 .

[7]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[8]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[9]  P. Gill,et al.  Coulomb energies via Stewart densities , 1998 .

[10]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[11]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[12]  Stephen W. Taylor,et al.  KWIK: Coulomb Energies in O(N) Work , 1996 .

[13]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[14]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[15]  Martin Head-Gordon,et al.  Auxiliary basis expansions for large-scale electronic structure calculations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  William J. Thompson,et al.  Atlas for Computing Mathematical Functions: An Illustrated Guide for Practitioners with Programs in Fortran 90 and Mathematica , 1997 .

[17]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  Kenneth G. Libbrecht Practical considerations for the generation of large-order spherical harmonics , 1985 .

[20]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[21]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[22]  G. Friesecke,et al.  Decay behavior of least-squares coefficients in auxiliary basis expansions. , 2005, The Journal of chemical physics.

[23]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[24]  O. D. Kellogg Foundations of potential theory , 1934 .

[25]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[26]  Peter Pulay,et al.  The Fourier transform Coulomb method: Efficient and accurate calculation of the Coulomb operator in a Gaussian basis , 2002 .